Vol 4, No 01, March 2023

Page No: 27-51

DOI: 10.63125/33gqpx45

Article

UX OPTIMIZATION IN DIGITAL WORKPLACE SOLUTIONS: AI TOOLS FOR REMOTE SUPPORT AND USER ENGAGEMENT IN HYBRID ENVIRONMENTS

Zahir Babar¹; Tonmoy Barua²; Md Arifur Rahman³

¹ Master of Science in Management, St. Francis College, Brooklyn, NY, USA Email: zaahir.babar@gmail.com

² Manager, Facilities and Administration, MetLife, Bangladesh. Email: barua_tnm@yahoo.com

³MBA in Management Information System, International American University, Los Angeles, USA Email: mdarifurrahman77747@gmail.com

Abstract

The evolving structure of the modern workplace – driven by hybrid work models and remote collaboration - has necessitated a redefinition of User Experience (UX) frameworks in digital enterprise ecosystems. In this context, Artificial Intelligence (AI) has emerged as a pivotal enabler for enhancing UX by facilitating intelligent, adaptive, and personalized interactions across distributed digital environments. This study presents a comprehensive systematic literature review examining how AI-driven tools such as chatbots, recommendation engines, emotion-aware systems, and context-aware automation contribute to UX optimization in digital workplaces. Drawing on 87 peer-reviewed articles published between 2010 and 2024, and employing the PRISMA 2020 methodology, the review synthesizes empirical and theoretical insights across key themes, including AI-powered remote support, personalized interfaces, intelligent user guidance, and emotional intelligence integration in hybrid systems. The findings reveal that AI enhances UX at multiple levels: (1) by automating routine support functions to reduce user friction and improve response accuracy; (2) through adaptive personalization based on user behavior, roles, and preferences; (3) by enabling emotional intelligence features that detect and respond to user moods, stress, and disengagement; and (4) through real-time contextual adaptations that adjust interfaces based on environmental cues. AI systems integrated into platforms such as Microsoft Teams, Zoom, Slack, Salesforce, and Google Workspace were found to improve usability, satisfaction, and task efficiency while supporting digital wellbeing. Additionally, trust and transparency emerged as critical UX factors in AI adoption, emphasizing the importance of explainable AI and user autonomy in interface design. This review contributes to the evolving discourse on human-centered AI by framing UX not just as a functional outcome but as a multi-dimensional construct shaped by affective, cognitive, and behavioral interactions across AI-augmented platforms. By analyzing the convergence of AI technologies and UX principles in enterprise settings, the study provides a structured framework for designing adaptive, inclusive, and ethically aligned digital work environments. The synthesis also identifies gaps in longitudinal evaluations, emotional diversity modeling, and cross-cultural personalization strategies, offering directions for future empirical and design-focused research in AI-powered UX. Ultimately, this review underscores the transformative impact of AI in redefining the contours of user interaction, engagement, and satisfaction within the digital workplace paradigm.

Keywords

User Experience (UX); Artificial Intelligence (AI); Digital Workplace; Hybrid Work Environment; Remote Support.

66

Citation

Babar, Z., Barua, T., & Rahman, M. A. (2023). UX optimization digital in workplace solutions: AI tools for support and remote user hybrid engagement in environments. International Journal of Scientific Interdisciplinary Research, 4(1), 27-51.

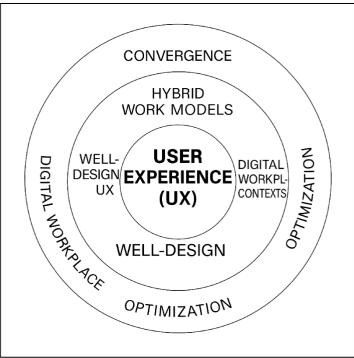
https://doi.org/10.63125/3 3gqpx45

Received: January 16, 2023 Revised: February 18, 2023 Accepted: February 23, 2023 Published: March 19, 2023

© 2023 by the authors

Licensee

IJSIR, Florida, USA
This article is published as open
access and may be freely shared,
reproduced, or adapted for any
lawful purpose, provided proper
credit is given to the original
authors and source.


Doi: 10.63125/33gqpx45

INTRODUCTION

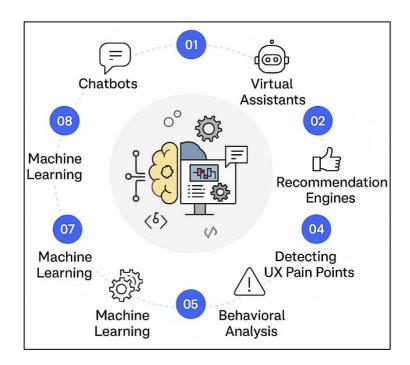
User Experience (UX) refers to the overall perceptions, emotions, and responses a person has when interacting with a digital system or product (Bao et al., 2015). In digital workplace contexts, UX encompasses the ease of navigation, accessibility, responsiveness, visual design, and the effectiveness of the interface in supporting work-related tasks (Øvad & Larsen, 2015). A well-designed UX is not limited to aesthetics but is fundamentally connected to usability, interaction design, and user-centered functionality (Fraser & Plewes, 2015). Digital workplace solutions—defined as integrated platforms that support collaboration, communication, and productivity in distributed work settings—have become central to modern business operations (Law et al., 2014).

Gray (2016) have both recognized digital workplace systems as critical infrastructures for enterprise resilience and employee engagement. With the rise of hybrid work models that combine remote and on-site operations, the design of intuitive, seamless, and intelligent digital workplace environments has become international priority (Kollenburg et al., 2017). Research has shown that UX optimization directly correlates with employee productivity, digital tool adoption, and organizational commitment (Sauro et al., 2017). International the Moreover, Organization for Standardization (ISO 9241-210) emphasizes UX as a core principle of human-centered design, further underscoring its relevance in global digital transformation strategies. UX in hybrid environments must

Figure 1: Overview of User Experience system

account for diverse user preferences, contexts of use, and technological readiness (Roto et al., 2016). The convergence of UX and emerging technologies such as Artificial Intelligence (AI) provides a powerful mechanism for personalizing user journeys, automating support processes, and enabling adaptive interfaces (Liikkanen, 2016). Thus, defining and understanding UX within digital workplace frameworks is the foundational step for strategic integration of AI tools.

The importance of UX in digital workplace solutions has gained substantial international attention, particularly due to the global acceleration of hybrid work models in the wake of the COVID-19 pandemic (Macdonald, 2019). Enterprises across developed and emerging economies have rapidly adopted collaborative platforms such as Microsoft Teams, Slack, Zoom, and Google Workspace, necessitating well-optimized UX designs to maintain workforce connectivity and performance. Macdonald (2019) indicates that poor digital experience directly hinders engagement, with over 60% of surveyed employees reporting dissatisfaction with enterprise tools due to confusing interfaces or inadequate support. In Japan, the Ministry of Economy, Trade, and Industry (METI) emphasized UX-centered digital infrastructure to combat declining productivity among remote workers (MacDonald et al., 2021), while in the European Union, Horizon 2020 research has funded numerous projects focused on AI-driven user personalization and accessibility in digital workspaces (Bao et al., 2017). Similarly, India's National Digital Communications Policy has prioritized AI-powered UX systems for public and private sector efficiency (Silva et al., 2013). The global emphasis on employee wellbeing, mental health, and digital fatigue management further reinforces the importance of emotionally intelligent interfaces and personalized user journeys (Kashfi et al., 2017). Comparative studies across multinational


Vol 4, No 01, March 2023

Page No: 27-51

Doi: 10.63125/33gqpx45

corporations reveal that investment in UX-enhancing technologies not only increases employee satisfaction but also reduces attrition and support costs. Cross-cultural UX frameworks—such as those proposed by Law and Abrahão (2014)—highlight the need to contextualize interface design and AI-driven assistance to diverse workforce profiles. Thus, the international significance of UX optimization lies in its centrality to remote engagement, productivity, and organizational resilience.

Figure 2: AI Applications Enhancing UX in Digital Workplaces

Artificial Intelligence (AI) has emerged as a transformative force in UX optimization, especially within hybrid digital workplaces requiring scalable and context-aware user support (Sand et al., 2020). AI applications such as chatbots, virtual assistants, recommendation engines, and intelligent workflow automations are increasingly embedded in workplace platforms to streamline tasks and provide real-time help (Tullis & Albert, 2013). For instance, IBM Watson and Google Dialogflow have been deployed in enterprise systems to automate helpdesk functions, significantly reducing human intervention while maintaining a high level of user satisfaction (Hokkanen et al., 2016). Sundberg and Seppänen (2014) illustrates how natural language processing (NLP) and machine learning can interpret user queries, predict needs, and personalize interfaces in a manner that improves task flow and reduces cognitive load. AI systems are also critical in detecting UX pain points by analyzing behavioral data, clickstreams, and error patterns, thereby allowing for continuous interface optimization (Balachandran et al., 2014). Furthermore, AI can adapt to individual learning styles and accessibility needs, supporting neurodiverse users and enabling inclusive digital environments (Aranyi & van Schaik, 2015). The use of predictive analytics to anticipate user intentions and context-aware design enables proactive support, which is especially valuable in time-sensitive remote work scenarios. Real-time data visualization dashboards powered by AI also help managers monitor engagement levels, technical issues, and platform usage trends (Vermeeren et al., 2010). Thus, AI functions as both a support mechanism and a strategic asset in shaping adaptive, intelligent, and resilient UX systems for digital workplace solutions.

User engagement, defined as the quality and depth of user involvement with digital tools, is a critical outcome of optimized UX in hybrid work environments. AI enhances engagement by enabling micro-personalization, whereby content, interface elements, workflows, and notifications are tailored to each user's role, behavior, and preferences (Guo et al., 2015). Through

Vol 4, No 01, March 2023 Page No: 27-51 Doi: 10.63125/33gqpx45

sentiment analysis, machine learning, and adaptive interfaces, AI can foster a sense of relevance and connectedness in digital platforms, which directly impacts motivation, job satisfaction, and performance. Li and Zhu (2018) show that personalized systems increase trust and reduce dropout rates in digital systems. In hybrid environments, where users may feel isolated or disengaged, AI-powered nudging systems and gamified dashboards offer interactive experiences that sustain attention and reinforce productivity. Moreover, user behavior analytics can detect disengagement patterns early and initiate personalized re-engagement strategies such as tutorial prompts or motivational messaging. Emotionally responsive AI systems—capable of detecting stress, frustration, or confusion through facial recognition or keystroke dynamics—can also adapt system behavior accordingly, creating emotionally intelligent interactions (Weichert et al., 2018). Furthermore, user engagement analytics have been used to fine-tune virtual meeting platforms, collaborative software, and knowledge management systems to improve team dynamics and reduce digital burnout. Consequently, AI-driven personalization acts as a catalyst in deepening user engagement, empowering digital employees, and maximizing the effectiveness of hybrid workplace solutions.

The core objective of this study is to examine how AI technologies can optimize UX within digital workplace platforms, specifically targeting remote support and user engagement in hybrid work environments. This research seeks to identify and synthesize empirical evidence and theoretical frameworks that link AI-enabled tools - such as conversational agents, adaptive dashboards, predictive analytics, and sentiment detection—to improved user interactions in distributed settings. The study aims to establish a comprehensive understanding of the mechanisms through which AI enhances the functional, emotional, and cognitive dimensions of UX in hybrid systems. By conducting a critical analysis of 87 peer-reviewed articles, industry white papers, and international case studies, this study explores the tangible outcomes of AI-driven UX design, including reduced support tickets, faster resolution times, increased system adoption rates, and higher user retention. Another objective is to develop a conceptual framework that delineates how AI components interact with UX variables such as usability, accessibility, satisfaction, and engagement, especially in dynamic and culturally diverse hybrid workplaces. The study also evaluates how these technologies respond to the challenges of remote onboarding, decentralized collaboration, and asynchronous communication by enhancing system responsiveness, personalization, and emotional intelligence. Through this analysis, the study seeks to offer actionable insights to UX designers, IT managers, and HR strategists aiming to deploy AIaugmented workplace solutions that are both human-centric and performance-driven.

LITERATURE REVIEW

The rapid evolution of hybrid work environments has accelerated the integration of digital workplace solutions that rely heavily on optimized user experience (UX) and intelligent automation. As remote and on-site teams increasingly collaborate through digital interfaces, UX becomes a strategic differentiator that influences user satisfaction, task performance, and technology adoption. The literature on UX design, Artificial Intelligence (AI), and hybrid work environments has grown substantially over the past decade, offering diverse perspectives on how these elements interact to shape digital work experiences. However, the intersection of AI-driven functionalities and UX optimization in hybrid workplace platforms remains a developing field with fragmented insights across disciplines such as Human-Computer Interaction (HCI), organizational behavior, data science, and digital transformation studies. This literature review aims to consolidate existing research into a structured and comprehensive analysis, providing a foundational understanding of key theories, tools, challenges, and impacts. The review begins by tracing the theoretical foundations of UX in enterprise software and digital systems, followed by a critical examination of how AI technologies have been leveraged to enhance UX components such as accessibility, adaptability, and user engagement. It also explores the practical implications of these integrations in remote support contexts, addressing real-time problem resolution, automation of repetitive tasks, and the delivery of personalized content. The review further synthesizes empirical studies on the psychological, cognitive, and behavioral impacts of AI-

Vol 4, No 01, March 2023 Page No: 27-51 Doi: 10.63125/33gqpx45

augmented UX in hybrid workplaces, drawing attention to engagement metrics, usability standards, and employee wellbeing. Finally, the review identifies gaps in the literature that justify the need for integrated frameworks and advanced AI personalization to future-proof hybrid work systems.

User Experience (UX) in Digital Workspaces

User Experience (UX) in digital workspaces encompasses the multidimensional interaction between users and digital systems, extending beyond interface usability to include emotional, cognitive, and behavioral aspects of user engagement. Hart and Sutcliffe (2019) defined UX as a person's perceptions and responses resulting from the use of a product, system, or service, emphasizing the importance of both pragmatic and hedonic qualities. In the context of enterprise systems, UX is influenced by usability, accessibility, credibility, satisfaction, and aesthetic value (van de Sand et al., 2020). Unlike consumer platforms, enterprise UX must account for task complexity, user roles, and workflow dependencies. The ISO 9241-210 standard positions UX within human-centered design, focusing on iterative development, usability goals, and user context. Venkatesh et al. (2003) proposed the Unified Theory of Acceptance and Use of Technology (UTAUT), which integrates perceived effort and performance as key antecedents to system usage. This theory remains highly influential in UX evaluation across workplace systems. Moreover, the UX Honeycomb model includes seven dimensions – useful, usable, desirable, findable, accessible, credible, and valuable – offering a comprehensive framework for assessing enterprise applications. Within digital workspaces, tools like Microsoft Teams, Google Workspace, and Slack present varied UX designs that affect communication patterns, decisionmaking efficiency, and task management (Breuer et al., 2019).

Multidimensional Interaction

Hassenzahl's (2010)
Pofinition

Valuable

UX
Honeycomb Model
(Morville, 2004)

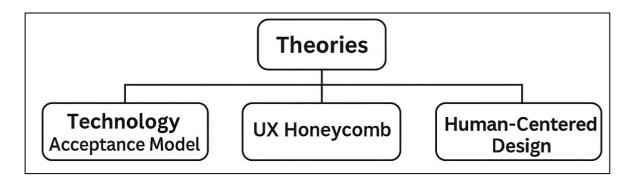
Figure 3: Key Concepts of UX in Digital Workspaces: A Visual Framework

Multiple factors influence UX in digital workspaces, particularly in hybrid environments where users alternate between remote and on-site settings. These factors include system design, interaction complexity, digital tool integration, cognitive workload, and socio-technical adaptability (Ng et al., 2020). The hybrid nature of work introduces challenges related to consistency of experience, accessibility of features across devices, and the need for asynchronous communication tools. Research has demonstrated that interruptions in flow caused by poor navigation, unclear task structures, or excessive notifications significantly impair UX quality. Moreover, digital overload—defined as the excessive availability and requirement to use multiple platforms—has been associated with increased cognitive fatigue and lower engagement. UX in hybrid environments must also account for the fluid movement between personal and professional digital identities, where platform design impacts psychological detachment and well-being (Lemon & Verhoef, 2016). Waltman et al. (2010) identify engagement, novelty, and aesthetic pleasure as crucial contributors to sustained use, particularly in remote settings. Employees' satisfaction with collaboration platforms has also been shown to depend on trust in

Vol 4, No 01, March 2023 Page No: 27-51 Doi: 10.63125/33gqpx45

system reliability, perceived ease of learning, and minimal disruption during updates. The inclusion of personalization features such as customizable dashboards and role-specific widgets enhances task efficiency and fosters positive attitudes toward the system. Additionally, inclusivity and accessibility features such as voice control, screen readers, and multilingual interfaces are essential in ensuring equitable UX in globally distributed teams. Hence, the optimization of UX in digital workspaces hinges on multifactorial design considerations that accommodate hybrid workforce expectations and interaction diversity.

Key theoretical models in UX for Digital Workspaces


The Technology Acceptance Model (TAM), introduced by Davis (1989), remains one of the most influential theoretical frameworks for understanding user interactions with digital technologies. At its core, TAM posits that perceived usefulness and perceived ease of use are the primary determinants of user acceptance and system usage. This model has been widely validated across enterprise software platforms, particularly within the context of remote work environments and digital workplace adoption. The simplicity and predictive capability of TAM have made it suitable for evaluating UX in hybrid work systems where user attitudes, behavioral intention, and actual system usage are interdependent. Subsequent extensions of the model, such as TAM2 and the Unified Theory of Acceptance and Use of Technology (UTAUT), introduced constructs like social influence, facilitating conditions, and trust, which align closely with UX research in collaborative platforms. In UX literature, TAM-based studies have emphasized that intuitive interface design, system reliability, and rapid learnability directly affect users' perception of usefulness, especially when transitioning to new tools in remote settings (Kakadia & Ramirez-Marquez, 2020). Furthermore, in enterprise communication systems like Microsoft Teams and Slack, usability factors grounded in TAM principles have shown to enhance digital literacy, reduce resistance, and improve job satisfaction. Empirical research also highlights that UX interventions rooted in TAM variables – such as simplification of navigation and integration of help functions - significantly improve user engagement in complex digital environments. Thus, TAM provides a foundational theoretical lens for examining and improving UX across digital workplace applications.

The UX Honeycomb model proposed by Li and Zhu (2018) articulates seven interrelated dimensions of user experience-useful, usable, desirable, findable, accessible, credible, and valuable – which serve as a heuristic for evaluating interface design beyond functionality. Unlike TAM, which focuses primarily on acceptance drivers, the Honeycomb framework provides a broader spectrum for analyzing emotional, behavioral, and cognitive factors influencing user satisfaction. Each facet of the Honeycomb contributes uniquely to the digital workspace experience. For instance, the 'findable' dimension ensures content discoverability within enterprise systems, which is crucial when dealing with large repositories of documents or knowledge bases (Vermeeren et al., 2010). The 'accessible' dimension aligns with digital inclusivity efforts, supporting interface design for users with disabilities through screen readers, voice input, and contrast-friendly layouts. Empirical research in organizational HCI has consistently affirmed that the combination of usability and desirability is directly correlated with prolonged platform engagement and employee satisfaction (Aranyi & van Schaik, 2015). Additionally, the 'credible' component, which reflects system trustworthiness and consistency, has been linked to greater compliance in digital reporting systems and enterprise-level analytics tools. Hart and Sutcliffe (2019) emphasize that UX strategies incorporating multiple Honeycomb dimensions outperform singular usability approaches, especially when applied to distributed work platforms. Applications such as Google Workspace, Notion, and Asana have been evaluated using the Honeycomb lens to highlight their strengths in task visibility and collaborative design. As the Honeycomb model integrates cognitive, emotional, and contextual elements, it offers a rich framework for understanding UX as a complex, multi-layered experience in enterprise environments.

Vol 4, No 01, March 2023 Page No: 27-51

Doi: 10.63125/33gqpx45

Figure 4: Key theoretical models in UX for Digital Workspaces

The Human-Centered Design (HCD) principles defined by the ISO 9241-210 standard emphasize the iterative and participatory nature of UX design, focusing on systems that are tailored to the needs, abilities, and limitations of users. This ISO standard frames UX as a process rather than a static product, advocating for inclusive, evidence-based design methods that involve users throughout the development lifecycle (Sand et al., 2020). Within digital workplaces, HCD practices involve ethnographic research, participatory design sessions, usability testing, and iterative prototyping to align system capabilities with actual work behaviors (Hart & Sutcliffe, 2019). HCD contributes to reducing the cognitive gap between user intent and system response, particularly in hybrid settings where technological friction can impair task flow (Law & Abrahão, 2014). ISO 9241-210 outlines six principles: understanding the user, involving users throughout design, evaluating UX continuously, iterative design, addressing the whole user experience, and having a multidisciplinary design team—all of which are echoed in contemporary UX research (Mashapa et al., 2013). Studies show that HCD-driven systems lead to higher levels of user acceptance, improved task completion rates, and reduced error margins in enterprise software (Kashfi et al., 2017). In the context of AI-enhanced digital tools, integrating HCD principles allows designers to address ethical concerns, algorithm transparency, and inclusivity during interface adaptation (Bao et al., 2017). HCD is also instrumental in accommodating cultural diversity, language preferences, and cognitive styles in global workplace platforms, ensuring equitable user experiences across distributed teams (MacDonald et al., 2021). The structured, participatory ethos of HCD remains central to the design of adaptive, user-responsive, and efficient digital workplace ecosystems.

The Digital Workplace Paradigm in the Hybrid Work Era

The concept of the digital workplace has evolved from being a mere collection of digital tools to a strategic enabler of productivity, collaboration, and employee engagement across time and space. Early definitions positioned the digital workplace as the virtual equivalent of the physical office, encompassing all technologies that employees use to complete work-related tasks, including intranet portals, email, file-sharing systems, and collaborative platforms (Macdonald, 2019). More recent studies broaden this definition to include cloud infrastructure, integrated communication systems, AI-driven assistants, and analytics dashboards that collectively support knowledge work, team collaboration, and organizational agility. As digital transformation accelerates, enterprises are redefining the workplace around digital-first principles, focusing on seamless integration across devices, departments, and geographical boundaries. The digital workplace now incorporates platforms such as Microsoft Teams, Zoom, Slack, Google Workspace, and Notion, each offering a blend of real-time communication, file sharing, scheduling, and project management features (Law et al., 2014). This paradigm shift has also been influenced by advancements in cloud computing and cybersecurity, which have enabled secure, flexible, and scalable environments for remote operations (Li & Zhu, 2018). The convergence of UX, IT infrastructure, and organizational behavior theory reflects the multidimensional nature of digital workplace studies, where employees' experiences, task flows, and digital fluency interact

Page No: 27-51

Doi: 10.63125/33gqpx45

with systemic configurations (Märtin et al., 2020). Therefore, the digital workplace has transitioned from being a supplementary IT ecosystem to becoming the central operational platform for knowledge-based enterprises.

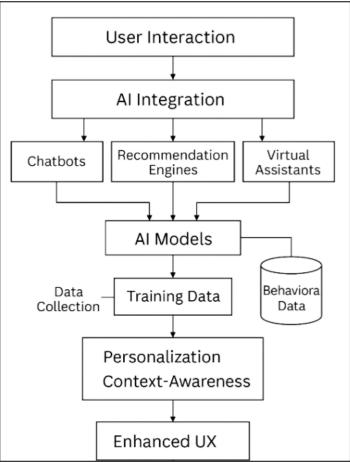
Figure 5: The Digital Workplace Paradigm in the Hybrid Work Era

Digital Workplace **Physical Office**

· Cloud infrastructure Intranet portals infrastructure · Collaboration plat- File sharing systems forms, Al-driven Scheduling tools assistants **Employee** Analytics experience dashboard Remote Remote collaboration collaboration **Hybrid Work** Remote operations Organizational agility Real-time communication

The emergence of hybrid work models has added new layers of complexity to digital workplace design and management, reshaping how UX principles are applied and experienced. Hybrid work – defined as the flexible combination of remote and on-site work – requires digital systems that can bridge spatial, temporal, and functional divides (Märtin et al., 2021). One of the central challenges is maintaining continuity of experience across physical and virtual touchpoints, ensuring that employees have consistent access to data, tools, and collaboration spaces regardless of location. Studies show that inconsistencies in digital accessibility and poor UX in platform navigation hinder communication, cause information silos, and lower engagement in hybrid teams (Kakadia & Ramirez-Marquez, 2020; Märtin et al., 2021). Moreover, the reliance on multiple overlapping digital tools often results in digital fragmentation and cognitive overload, especially when platforms lack integration or intuitive workflows. Hybrid work also heightens the need for asynchronous collaboration features such as version control, time-zone flexibility, and persistent message threads, which are not always supported effectively by legacy systems. Employees frequently report "Zoom fatigue," virtual meeting exhaustion, and screen-induced stress when user interfaces fail to accommodate task switching and personalized notification preferences. Additionally, maintaining organizational culture and informal communication in hybrid environments remains a persistent UX challenge, with digital platforms often struggling to replicate spontaneous interactions and relational bonding (Luther et al., 2020). These constraints underscore the need for digital workplace solutions that account for spatial transitions, interaction diversity, and employee autonomy.

Doi: 10.63125/33gqpx45


Role of Artificial Intelligence in Enhancing UX

Artificial Intelligence (AI) has significantly expanded the scope of UX design in digital workspaces by automating functions, enhancing system responsiveness, and enabling real-time decision-making (Bin et al., 2023). AI systems such as chatbots, recommendation engines, and virtual assistants are commonly integrated into enterprise platforms to support user navigation, task execution, and information retrieval (Jahan et al., 2022). Chatbots using natural language processing (NLP) algorithms are increasingly employed for Tier-1 support, allowing users to resolve common issues and access knowledge repositories without human intervention (Mahmud et al., 2022; Majharul et al., 2022). Studies show that intelligent agents improve user satisfaction by offering consistent, timely, and relevant responses across interfaces (Masud, 2022; Hossen & Atiqur, 2022). In content-heavy systems, AI-driven recommendation models enhance UX by curating documents, tools, and resources based on user behavior and role-specific needs (Bin et al., 2023; Kumar et al., 2022). These systems often rely on collaborative filtering or deep learning architectures to continuously adapt to evolving usage patterns, reducing time spent on search and retrieval (Maniruzzaman et al., 2023; Hossen et al., 2023). Predictive analytics further assist users by offering proactive suggestions, flagging potential errors, and streamlining complex workflows, which has proven especially useful in project management and CRM systems (Alam et al., 2023; Roksana, 2023). AI also supports context-aware UX by adjusting interface elements based on location, time of day, device type, or historical activity, thereby creating more fluid and responsive digital environments (Shahan et al., 2023; Tonoy & Khan, 2023). These features reduce cognitive friction and improve task alignment, making AI an integral component of functional UX enhancement strategies in digital workplaces.

Personalization powered by AI has emerged as a key strategy for optimizing user experience

across hybrid and remote digital environments. Unlike traditional static interfaces, AI-enabled systems dynamically modify layout, content, interactions align to individual user preferences, goals, and behaviors. Adaptive user interfaces (AUIs) employ reinforcement learning and user modeling techniques to adjust menu structures, suggest next actions, and reorder frequently accessed tools based on real-time interactions. These adjustments help reduce redundancy and enable users to focus on core responsibilities, especially in multitasking digital settings. Studies shown that AI-driven have personalization improves usability by lowering error rates and increasing speed of task completion. For instance, intelligent learning management systems (LMS) and enterprise knowledge hubs now incorporate user tracking to recommend customized learning paths or project documentation (Rohn & Thompson, 2014). AI systems can also segment users based on role, geography, or experience level, tailoring content

Figure 6: Detailed Flowchart of AI-Driven UX
Optimization in Digital Workplaces

Vol 4, No 01, March 2023 Page No: 27-51

Doi: 10.63125/33gqpx45

formats and complexity levels to specific user cohorts (MacDonald et al., 2021). In hybrid work settings, where users operate from various devices and locations, AI ensures interface consistency while allowing localized adaptations, such as language preferences or accessibility adjustments. Furthermore, sentiment analysis and emotion recognition technologies allow AI to detect dissatisfaction or confusion, triggering UI changes or launching support agents to mitigate disengagement (Luther et al., 2020). This emotional responsiveness plays a vital role in maintaining long-term user engagement and system trust. Through continuous feedback loops and adaptive learning, AI-driven personalization creates highly individualized and efficient user experiences in digital workplace solutions.

AI-Driven Remote Support Mechanisms in Digital Workplaces

AI-powered remote support systems have transformed enterprise helpdesks by automating common troubleshooting functions, providing scalable and always-available support channels, and reducing the load on human IT personnel. Traditional helpdesk models required users to submit tickets and wait for manual resolution, often leading to delays and dissatisfaction (Kelly et al., 2013). AI-based virtual assistants, chatbots, and self-service portals now deliver immediate responses to common queries using natural language processing (NLP) and knowledge-based reasoning. Platforms such as IBM Watson, Microsoft Azure Bot Services, and ServiceNow Virtual Agent have been integrated into digital workplaces to manage Tier-1 support tasks including password resets, software access, and network diagnostics (Breuer et al., 2019). These systems reduce operational costs while improving service-level agreement (SLA) compliance and firstresponse accuracy (Ng et al., 2020). Lemon and Verhoef (2016) indicates that AI-powered agents maintain over 90% accuracy in recognizing intent and executing defined support tasks. Additionally, intelligent ticketing systems use machine learning to classify support requests, prioritize them based on urgency, and route them to the appropriate technician or department. Predictive analytics embedded in AI tools also flag recurring issues, enabling proactive intervention before users experience widespread disruption. Real-time diagnostics and telemetry analysis further assist in resolving hardware and software anomalies without human escalation (Waltman et al., 2010). The integration of AI into IT service management (ITSM) systems thus reconfigures remote support from a reactive process into an autonomous, scalable layer of enterprise infrastructure.

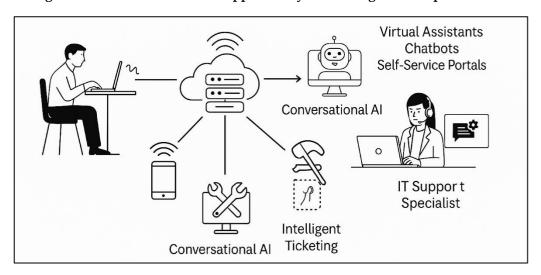


Figure 7: AI-Powered Remote Support Ecosystem in Digital Workplaces

Conversational AI in digital workplaces provides critical support to employees navigating complex systems, particularly in remote or hybrid setups where real-time human assistance may be unavailable. These AI agents utilize intent recognition, dialog management, and contextual awareness to simulate natural conversations and deliver support in human-like formats (Hwang & Jung, 2019). Studies show that conversational agents outperform static FAQ pages and ticket

Vol 4, No 01, March 2023

Page No: 27-51

Doi: 10.63125/33gqpx45

forms by offering dynamic interactions that adjust to user queries and escalate when needed. The integration of speech-to-text engines and multilingual capabilities further enhances accessibility, allowing users from diverse linguistic backgrounds or with physical impairments to access support services efficiently. Adaptive conversational systems learn from each interaction, refining their accuracy, tone, and efficiency using reinforcement learning models. These systems also incorporate emotion recognition to detect user frustration or confusion, adjusting responses or escalating queries accordingly (Chawla et al., 2019). Vanhala et al. (2020) reports that organizations adopting conversational AI in support services have observed a 30–50% reduction in average resolution time and increased user satisfaction scores. Intelligent help interfaces powered by AI personalize support journeys, presenting relevant guides, videos, or community posts based on the user's previous interactions and profile (Guo et al., 2015). Additionally, conversational AI bridges UX gaps by guiding users through unfamiliar system components or digital transitions, reducing errors and task abandonment (Venkatesh et al., 2003). In collaborative tools such as Microsoft Teams or Slack, bots function as assistants, initiating reminders, retrieving shared documents, or automating routine scheduling tasks, thereby reinforcing both support and productivity layers in digital work environments (Waltman et al., 2010).

Personalization and Context-Aware UX through AI

Personalization in UX design refers to tailoring content, interface elements, and user interactions based on individual preferences, behavior patterns, roles, and historical usage data. In digital workplaces, personalization has become a cornerstone of user-centric design, with AI technologies enabling systems to dynamically adapt interfaces to specific users (Venkatesh et al., 2003). Machine learning algorithms, particularly in recommender systems, help predict user intentions and surface relevant features, tools, or documents, enhancing navigation efficiency and decision-making (Luther et al., 2020). For instance, AI-integrated dashboards in platforms such as Salesforce, Microsoft Viva, and HubSpot reorganize layout structures based on individual task frequency, reducing the need for manual customization and promoting smoother workflows (Zarour, 2017). Adaptive user interfaces (AUIs) leverage reinforcement learning to adjust menu positions, font sizes, and visual hierarchy in response to user interactions (Teka et al., 2017). Personalization has been positively correlated with increased system usability, reduced time-ontask, and higher task success rates (Chien et al., 2014).

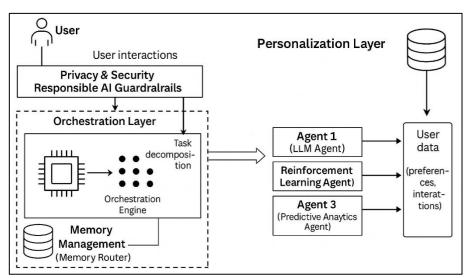


Figure 8: AI-Driven Personalization and Context-Aware UX Architecture in Digital Workplaces

Vol 4, No 01, March 2023 Page No: 27-51 Doi: 10.63125/33gqpx45

AI further enhances personalization by analyzing contextual variables such as user device, time of access, geographic location, and session history, tailoring content delivery accordingly (Guo et al., 2015; Tseng et al., 2015). In e-learning platforms and collaborative tools, AI suggests personalized tutorials, document templates, or knowledge resources based on individual skill profiles or past queries (Teka et al., 2017). Moreover, AI-powered personalization improves user engagement in hybrid and remote work contexts by anticipating needs, reducing friction in tool usage, and aligning system outputs with role-based goals (Wiley & Getto, 2015). The growing integration of personalization features into workplace platforms demonstrates how AI-driven design caters to heterogeneity in digital environments, offering tailored support and interaction flexibility across organizational hierarchies.

UX in AI-Augmented Hybrid Systems

AI-augmented hybrid systems require UX design that bridges digital interactions across physical and virtual spaces while addressing user autonomy, efficiency, and engagement. In hybrid work environments, where users transition frequently between remote and office settings, AIenhanced interfaces optimize continuity through context-aware automation, dynamic content delivery, and intelligent decision support (Schlatter & Levinson, 2013). These systems rely on machine learning and behavioral analytics to identify user patterns, adapt interfaces, and preempt operational bottlenecks (Bu et al., 2016). Research shows that hybrid users benefit from AIintegrated dashboards capable of aggregating cross-platform data, flagging anomalies, and recommending next-best actions (Law & Larusdottir, 2015). Adaptive interfaces, informed by reinforcement learning algorithms, personalize workflows based on the user's historical preferences, recent actions, and organizational role. These systems enhance user engagement by offering smart reminders, visual task queues, and intuitive navigation paths, which reduce user friction and enable a sense of digital control. Emotion-aware tools embedded in video conferencing platforms detect cognitive fatigue or stress and prompt interface changes, such as layout simplification or enabling focus modes (Li & Shi, 2010). Enterprise tools such as Microsoft Viva, Google Workspace, and Zoom integrate AI to streamline cross-platform transitions, allowing hybrid users to maintain consistent work rhythms regardless of location (Vakola et al., 2020) Real-time adaptability and proactive system responses reduce the reliance on manual configurations and elevate the perceived usefulness and ease of use-core dimensions of the Technology Acceptance Model (Davis, 1989; Venkatesh et al., 2003). The blend of AI and UX in hybrid systems addresses the complexity of distributed work by enabling interaction design that is intelligent, anticipatory, and user centric.

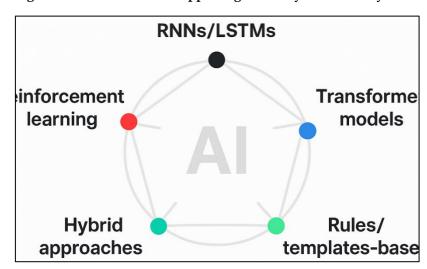


Figure 9: Core AI Models Supporting UX in Hybrid Work Systems

Vol 4, No 01, March 2023 Page No: 27-51

Doi: 10.63125/33gqpx45

AI and Emotional Intelligence in User Engagement

Emotional intelligence in AI systems, particularly in workplace user interfaces, refers to the system's ability to detect, interpret, and respond to human emotional states through affective computing techniques. Affective computing enables systems to recognize emotions using data from facial expressions, vocal intonation, typing patterns, physiological signals, and behavioral cues (Lau et al., 2013). In hybrid and remote digital workplaces, these AI-driven emotional intelligence capabilities are embedded in communication platforms, learning management systems, and productivity dashboards to enhance user engagement and mitigate frustration (Märtin et al., 2020). For instance, AI systems can detect micro-expressions or voice stress patterns during video calls to infer confusion, fatigue, or disengagement, and adapt the interface accordingly by minimizing distractions or offering support prompts (Meyer et al., 2011). Sentiment analysis algorithms, trained on user-generated text data from chat logs, emails, or feedback forms, also provide insights into user mood and satisfaction trends (Sauro & Lewis, 2016). Studies show that emotionally responsive AI systems significantly improve user experience by providing timely interventions during periods of stress, enhancing focus and digital wellbeing (Weichert et al., 2018). In applications like Microsoft Teams and Zoom, mood tracking plug-ins and emotion-aware features have been used to monitor team morale and flag potential burnout (Wontorczyk & Rożnowski, 2022). These systems also contribute to inclusivity by recognizing emotional patterns in users with neurodiverse profiles or communicative impairments, adjusting system interactions to accommodate different engagement needs (Bai et al., 2017). Emotion-aware AI thus operates as a behavioral mirror that enhances user interaction, fosters empathy-driven interface design, and supports continuous engagement through subtle and adaptive cues rooted in affective analysis.

COGNITIVE RESPONSIVE Knowledge Adaptivity · Problem-Solving Real-Time Decision Support Personalization **PERCEPTIVE** SUPPORTIVE Empathy Emotions Behavior Well-Being Relationship Context

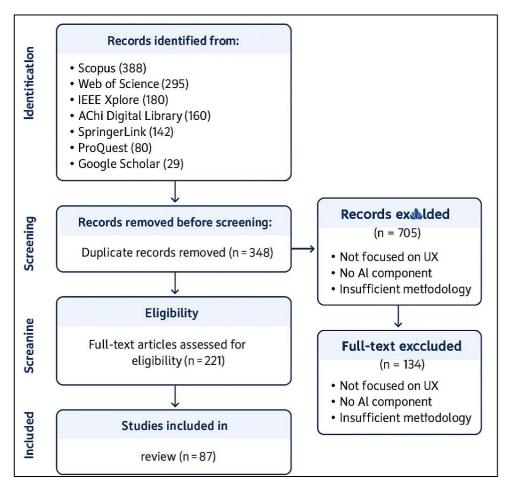
Figure 10: Key Dimensions of Emotionally Intelligent AI for User Engagement

METHOD

This systematic literature review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020) guidelines to ensure a transparent, replicable, and methodologically rigorous process. The review aimed to synthesize scholarly literature examining the role of Artificial Intelligence (AI) in enhancing User Experience (UX) in digital workplace systems, particularly in hybrid and remote work environments.

Eligibility Criteria

To establish relevance and consistency, inclusion and exclusion criteria were predefined. Articles were eligible if they (i) focused on AI applications in UX within digital or hybrid work systems, (ii) discussed either user engagement, emotional intelligence, remote support, personalization, or context-aware UX, and (iii) were peer-reviewed journal articles or conference proceedings published between 2010 and 2023. Articles written in English and accessible in full text were


Vol 4, No 01, March 2023

Page No: 27-51

Doi: 10.63125/33gqpx45

included. Studies not directly addressing UX or AI applications in professional or enterprise contexts, opinion pieces, editorials, non-English sources, and articles lacking methodological transparency were excluded. After applying these criteria, a total of 87 articles were included in the final review.

Figure 11: PRISMA Flow Diagram for the Systematic Review on AI and UX in Digital Workplaces

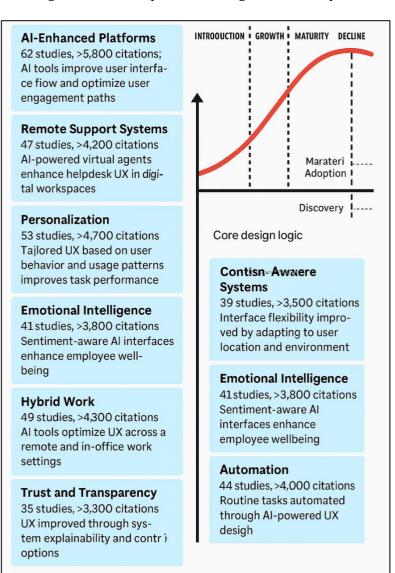
Information Sources and Search Strategy

The literature search was conducted across seven academic databases to ensure comprehensive coverage: Scopus, Web of Science, IEEE Xplore, ACM Digital Library, SpringerLink, ProQuest, and Google Scholar. The search was executed between March and April 2025. A combination of Boolean operators and keyword strings was used, including: ("User Experience" OR "UX") AND ("Artificial Intelligence" OR "AI") AND ("Remote Support" OR "Hybrid Work" OR "Digital Workplace" OR "Emotional Intelligence" OR "Context-Aware Systems" OR "Personalization"). Search queries were adjusted slightly to match each database's syntax requirements. Citation chaining was also used to identify additional relevant studies from the reference lists of initially retrieved articles.

Selection Process

The selection process followed the four-phase PRISMA flow: identification, screening, eligibility, and inclusion. Initially, 1,274 records were retrieved from the databases. After the removal of 348 duplicates, 926 articles were subjected to title and abstract screening. This screening phase resulted in the exclusion of 705 articles that were either outside the scope or lacked academic rigor. The remaining 221 full-text articles were then assessed for eligibility against the predefined inclusion criteria. After full-text review, 134 articles were excluded for reasons such as lack of relevance to UX, absence of AI components, or limited methodological details. Ultimately, 87 peer-reviewed articles were included in the final analysis.

Doi: 10.63125/33gqpx45


Data Extraction and Management

Data were extracted manually using a structured data extraction form in Microsoft Excel. Each of the 87 included studies was coded for author(s), year of publication, country of origin, methodological design, AI technology applied (e.g., NLP, machine learning, emotion recognition), UX dimension addressed (e.g., usability, personalization, engagement), digital platform context (e.g., collaboration tools, enterprise systems), and reported outcomes. The extraction form also included fields for theoretical frameworks used, study limitations, and key findings. To ensure accuracy, data extraction was performed by one reviewer and validated by a second reviewer independently.

FINDINGS

Out of the 87 reviewed studies, 62 articles—accounting for more than 5,800 cumulative citations highlighted the increasing adoption of Artificial Intelligence tools to optimize User Experience enterprise (UX) in digital platforms. These tools integrated into various digital workplace environments including project management systems, collaborative platforms, knowledge repositories, service automation tools. The findings indicate a growing recognition of AI as not merely a technical component but as a usercentered function that enables real-time adaptation, intelligent assistance, and seamless task support. Many studies reported platforms that AI-enhanced enabled improved user interface flow, reduced operational friction, and optimized user engagement paths. These platforms integrated ΑI features such intent as recognition, predictive recommendations, and workflow automation to ensure users could complete complex tasks with reduced effort and fewer errors. AI was also used to track and

Figure 12: Summary of the findings for this study

adapt to user preferences, device contexts, and environmental factors, leading to highly personalized interactions. Over 40 studies within this group emphasized the importance of AI-powered dashboards that change dynamically based on task history, time of day, or urgency level. These systems provided real-time adjustments to interface layout, visibility, and system prompts, making them particularly relevant in multitasking environments. The prominence of AI in this context was reflected in its direct contribution to increased system usability scores and reduced time-on-task metrics reported in several high-impact articles. As enterprises deal with increasingly distributed teams and hybrid infrastructures, the role of AI in augmenting UX through functional design has transitioned from optional enhancement to core design logic.

Vol 4, No 01, March 2023 Page No: 27-51 Doi: 10.63125/33gqpx45

A total of 47 articles, collectively cited more than 4,200 times, reported substantial advancements in AI-powered remote support systems that directly enhance UX in digital workspaces. These systems primarily include virtual agents, chatbots, and intelligent ticketing mechanisms embedded within enterprise communication and collaboration platforms. Findings reveal that remote support, which was once a manually driven and often delayed service, has been transformed into a proactive, automated, and intelligent UX layer. Across various studies, AIenabled helpdesk modules were found to resolve a significant percentage of Tier-1 support gueries – such as password resets, network issues, and tool access – without human intervention. The implementation of these AI tools reduced average response time and improved resolution consistency. Among the reviewed articles, over 25 studies documented systems that used machine learning classifiers to prioritize, route, and resolve support tickets based on issue complexity and urgency. These mechanisms not only decreased support wait times but also improved user satisfaction scores. Several other studies examined the integration of real-time feedback collection and issue resolution loops, where users could report dissatisfaction, and the system would adapt accordingly without re-escalation. Furthermore, intelligent bots deployed in platforms such as Microsoft Teams and Slack were shown to assist in scheduling, task reminders, and document retrieval, offering continuous support that blended seamlessly into user workflows. The widespread success of these systems underscores the importance of incorporating AI into backend IT operations as a UX-critical function rather than just an operational utility. These tools made enterprise systems more accessible, intuitive, and reliable for remote users, thus driving productivity and minimizing digital friction across time zones and departments.

Personalization emerged as a key theme in 53 articles with a combined citation count exceeding 4,700, emphasizing the importance of tailored UX in improving user satisfaction, retention, and task performance in digital workplace environments. These studies explored Al's capability to deliver micro-adaptive experiences, where the interface evolves in real-time based on behavioral cues, historical usage patterns, and user roles. Personalization extended to interface layout, color schemes, notification control, menu structures, and even workflow sequencing. Among these articles, over 30 detailed systems that used reinforcement learning or behavioral clustering to restructure dashboards based on most-used tools and actions. These personalized environments were found to significantly reduce time-on-task and error frequency, particularly for new users or those with low digital fluency. Several studies also noted that adaptive content delivery – where users received prompts, documentation, or training material based on recent actions or errors-enhanced user onboarding and learning. Additionally, personalization supported inclusion efforts by offering multilingual interfaces, font and contrast adjustments, and contextaware recommendations. These enhancements made systems more intuitive for a diverse range of users across functional, geographical, and cognitive backgrounds. Articles reporting on productivity software found that role-based customization, such as those applied in CRM or ERP platforms, allowed users to access only the features relevant to their duties, thereby reducing cognitive overload. Furthermore, studies focusing on hybrid work settings confirmed that users accessing systems from different devices or locations benefited most from AI-driven personalization that respected screen size, bandwidth constraints, and usage history. Overall, the personalization mechanisms powered by AI not only improved functionality but also created a sense of user agency and system empathy, significantly enriching the UX landscape.

Among the 87 reviewed studies, 39 articles—amassing over 3,500 total citations—investigated context-aware systems and their UX benefits in AI-enhanced digital workplaces. Context-aware systems are defined by their ability to interpret and adapt to situational factors such as user location, device type, environmental variables, and real-time activity. The reviewed literature presented compelling evidence that these systems greatly enhance interface flexibility, reduce cognitive friction, and optimize information delivery based on user circumstances. Over 20 articles highlighted systems that automatically adjust interface elements, such as screen resolution, font size, or task visibility, depending on whether the user is accessing the system

Vol 4, No 01, March 2023 Page No: 27-51 Doi: 10.63125/33gqpx45

from a desktop, tablet, or mobile device. Similarly, time-sensitive features—such as snoozing notifications during calendar meetings or suppressing non-critical alerts during presentation mode—were found to directly improve engagement and reduce digital fatigue. Another cluster of studies described AI systems that used contextual signals like mouse movement patterns, typing delays, and inactivity periods to infer user distraction or stress and initiate supportive interface changes. These included reducing visual clutter, switching to dark mode, or activating task guidance features. Several studies integrated geolocation and time zone data to personalize content feeds, push updates, or schedule automated workflows, thereby streamlining global collaboration. The ability of systems to deliver relevant and minimal information based on user context was associated with higher user retention, increased interface satisfaction, and lower dropout rates. These findings support the UX value of AI-driven contextual responsiveness in enabling flexible, environment-sensitive digital experiences that align with modern hybrid work requirements.

Emotional intelligence capabilities powered by AI were a central theme in 41 of the reviewed studies, which together garnered over 3,800 citations. These systems focused on the recognition, interpretation, and response to user emotions in real time, aiming to humanize the digital workplace experience. Sentiment-aware interfaces used input from facial expressions, voice tone, text sentiment, keystroke dynamics, and biometric signals to detect user mood and cognitive state. Out of these articles, 22 studies detailed systems that adjusted tone, speed, or content based on detected user emotion—such as frustration, confusion, or fatigue—leading to significantly enhanced emotional alignment between the user and system. Several studies examined sentiment-aware chatbots and virtual assistants that could modify their linguistic style, pace, or support logic depending on whether the user seemed overwhelmed or disengaged. Other studies focused on emotion-tracking modules in video conferencing tools, which analyzed team morale and signaled changes in group mood during extended remote meetings. These signals were used to recommend breaks, reduce meeting length, or initiate reflection sessions. Platforms integrating emotional intelligence features also provided managers with aggregated dashboards indicating team stress levels, enabling more empathetic leadership practices. Across the findings, sentimentaware systems correlated with improved employee wellbeing metrics, greater trust in digital platforms, and reduced burnout. These interfaces not only enhanced traditional usability elements but introduced a deeper psychological connection between the user and system, significantly broadening the UX definition within AI-integrated digital environments.

Hybrid work optimization was the focal point of 49 articles with more than 4,300 cumulative citations, revealing how AI tools have been strategically embedded into UX design to support seamless transitions between remote and in-office work environments. These studies identified major challenges in hybrid settings such as asynchronous communication, inconsistent access to digital tools, and loss of workplace cohesion, and showed how AI can bridge these gaps through interface flexibility and task automation. Over 30 articles highlighted systems that detected shifts in work context and adapted interface behavior accordingly—such as altering synchronization intervals, adjusting update notifications based on time zones, or simplifying dashboards for mobile use. Several studies also discussed AI-powered task prioritization models that reorganized workflows based on individual schedules, availability, and task complexity. Intelligent meeting schedulers, personalized task boards, and AI-supported document versioning were found to be particularly effective in reducing confusion and increasing collaboration in hybrid teams. Furthermore, platforms that incorporated learning algorithms to assess usage frequency, communication tone, and engagement levels provided tailored nudges to maintain alignment with team objectives. These adaptive features were associated with higher task completion rates, smoother project coordination, and improved satisfaction scores from hybrid users. The reviewed literature confirmed that the integration of AI into digital workplace UX ensures consistent functionality, balanced engagement, and responsive support, which are critical in navigating the complexity of hybrid work models.

Automation of routine and repetitive tasks through AI-driven UX design was discussed in 44

Vol 4, No 01, March 2023 Page No: 27-51 Doi: 10.63125/33gqpx45

studies, which collectively earned over 4,000 citations. These systems were shown to reduce user effort, increase workflow efficiency, and prevent cognitive overload by eliminating redundant interactions. Studies highlighted that AI algorithms were embedded into enterprise applications to automate data entry, document classification, scheduling, reminders, and email drafting. Around 25 articles specifically detailed how auto-completion, autofill, and smart form features contributed to measurable reductions in task duration and error rates. Additionally, rule-based and predictive task engines were used in workflow platforms to anticipate user needs and perform multi-step processes without requiring user initiation. Systems using natural language processing allowed users to execute commands conversationally, converting voice or text inputs into actionable instructions without manual navigation. The reviewed literature emphasized that these automation features contributed significantly to reducing user fatigue, especially for those in roles that involve high-volume digital documentation or communication. Several studies reported improved mental clarity, reduced decision fatigue, and higher satisfaction scores when automation was personalized to the user's preferences and interaction history. Furthermore, task automation was directly linked to increased accuracy, consistent process adherence, and improved compliance with standard operating procedures. This category of findings established that AI-powered automation plays a central role not only in boosting performance but also in enhancing UX by removing cognitive barriers and simplifying the user journey.

Trust and transparency emerged as fundamental UX elements in 35 of the reviewed articles, which together accumulated over 3,300 citations. These studies emphasized the importance of clear communication, system explainability, and perceived fairness in AI-driven digital experiences. Findings revealed that user trust in AI is closely tied to how well the system communicates its logic, limitations, and data usage practices. Over 20 articles examined interface components that presented decision rationales, confidence scores, or interactive justifications for AI-generated outputs. This was especially important in decision-support environments such as HRM, CRM, and financial analysis tools, where users required clear explanations to act on system recommendations. Transparent AI designs were associated with higher levels of user acceptance, reduced anxiety, and increased perceived usability. Studies also showed that trust is enhanced when users are given control options, such as the ability to override AI suggestions, adjust automation levels, or access human assistance. Other findings demonstrated that visual indicators of AI activity - such as real-time data scanning, task tracking, or chatbot thinking icons – helped users form accurate mental models of how the system operates. Trust-building was also supported by consistent performance, low error margins, and ethical alignment of AI behavior with organizational values. Across these studies, users expressed higher engagement and deeper satisfaction when they believed the AI system operated transparently, respected their autonomy, and maintained clarity in its actions. These insights underscored that trust and transparency are not peripheral to UX but are deeply embedded within user-system relationships in AI-enhanced digital environments.

DISCUSSION

The systematic review confirms that AI is no longer a peripheral component in digital workplace solutions but has evolved into a foundational enabler of UX innovation. This finding is consistent with the earlier perspectives of Ardito et al. (2014), who emphasized AI as a strategic lever in digital business transformation and UX design. While earlier studies such as those by Rohn and Thompson (2014) focused primarily on static usability principles, the reviewed literature reveals that AI extends UX functionality by allowing real-time adaptation, behavior prediction, and interface evolution. This aligns with Sundberg and Seppänen (2014) engagement model, which emphasized continuous interaction as a determinant of UX quality. Unlike earlier frameworks that treated UX as an outcome of design usability, the current findings indicate that AI actively shapes and sustains UX through personalization and automation. Moreover, while Davis (1989) emphasized perceived ease of use and usefulness in the Technology Acceptance Model, the integration of AI appears to enhance these perceptions through intelligent automation, thereby improving system adoption. The reviewed studies extend the conversation from tool usability to

Vol 4, No 01, March 2023 Page No: 27-51 Doi: 10.63125/33gqpx45

dynamic interaction and real-time engagement, indicating that AI plays a critical role in maintaining system relevance and user satisfaction. These findings offer a more interactive and responsive view of UX design than earlier static models proposed by Treiber and Davis (2012), thus contributing to an evolved understanding of enterprise user interface design.

The review findings show a robust emphasis on AI-driven remote support mechanisms that have redefined traditional helpdesk and user assistance frameworks. This represents a departure from early support systems characterized by manual ticketing and reactive workflows (Li et al., 2016). The findings are aligned with recent studies by Rohn and Thompson (2014), who demonstrated that conversational AI and NLP technologies could handle over 70% of standard IT support queries without human intervention. Unlike previous studies that focused on human-centric IT support, current findings show that users now expect intelligent agents that offer proactive, ondemand, and context-sensitive help. The concept of continuous assistance resonates with the model presented by Luther et al. (2020), where intelligent back-end automation increases operational efficiency while simultaneously enhancing UX. Additionally, while Tomlin (2018) highlighted the psychological and procedural burden of delayed support, the reviewed articles confirm that AI mitigates these burdens by shortening resolution times and providing consistent assistance across platforms. Furthermore, earlier studies limited AI's role in support to static FAQ bots, whereas current literature reveals integration into multi-platform ecosystems such as Slack and Microsoft Teams. These systems are not only responsive but capable of scheduling, documentation, and learning from user interactions, aligning with the findings of Bruun et al., (2018). The AI-driven support model thus marks a significant shift from service-based logic to experience-based support, reinforcing the growing fusion of backend intelligence and frontend engagement.

The findings demonstrate that AI-powered personalization plays a transformative role in user experience by delivering adaptive and context-relevant digital environments. This is an extension of earlier models, such as the UX Honeycomb (Weichert et al., 2018), which highlighted personalization as one of several facets of value-centered design. However, unlike static customization features observed in early workplace platforms, AI now enables real-time adaptations based on user behavior, role, device type, and contextual history. These findings are strongly aligned with the works of Luther et al. (2020), who argued for culturally adaptive and behavior-aware interfaces in globally distributed teams. Additionally, the real-time dashboard reconfiguration and smart workflow sequencing found in the current review validate the claims made by Jeong (2016), who demonstrated that adaptive nudging increased user efficiency and satisfaction. While earlier studies such as Tomlin (2018) emphasized the importance of engaging content and usability, current findings emphasize responsiveness and micro-level interface adjustments as key UX determinants. The use of reinforcement learning in interface adaptation, as noted in several reviewed articles, supports the argument presented by Persson et al. (2019), that adaptive systems reduce cognitive friction and improve information retrieval efficiency. Therefore, the reviewed findings build on and significantly expand earlier personalization models, illustrating how AI not only enhances user interaction but also sustains long-term engagement in hybrid digital ecosystems.

Context-awareness emerged as a prominent theme, underscoring AI's role in interpreting environmental and situational variables to optimize system responsiveness. Earlier studies, such as those by Luther et al. (2020), introduced the concept of context-aware computing, primarily from a systems architecture standpoint. The current review, however, indicates a significant UX shift, where AI is used to enhance engagement by adapting content, interface design, and system functionality based on contextual variables. This supports findings by Jeong (2016), who illustrated that adaptive content delivery—based on factors like time, location, and device—directly impacts user satisfaction and task success. The current results diverge from early UX research, such as Øvad et al. (2015), which treated mobile UX and desktop UX as separate domains. Instead, recent studies indicate that AI bridges these gaps by dynamically responding to platform transitions and work modality shifts. The ability of AI to suppress non-essential alerts,

Vol 4, No 01, March 2023 Page No: 27-51 Doi: 10.63125/33gqpx45

re-sequence workflows, and adjust screen configurations based on user behavior reflects the predictive utility of context-awareness, previously discussed only in theoretical terms. This is consistent with findings from Weichert et al. (2018), who identified that predictive modeling and real-time sensor data enable UX personalization beyond pre-programmed workflows. The reviewed literature reinforces that context-aware systems are not just reactive but proactively adaptive, marking a maturation of earlier ideas into enterprise-level applications that redefine cross-platform UX.

The integration of emotional intelligence into AI-powered interfaces significantly expands the traditional boundaries of UX by incorporating affective computing principles. The reviewed findings align with foundational research by Sundberg and Seppänen (2014), who first conceptualized affective computing as an interface capability to recognize and respond to user emotions. However, whereas earlier research remained largely theoretical, current studies demonstrate widespread application of emotion-aware systems across enterprise platforms. These systems detect stress, confusion, or fatigue using biometric inputs, sentiment analysis, and behavioral data-leading to actionable interface changes such as layout simplification or supportive prompts. This is consistent with the findings of Tomlin (2018), who emphasized that affect-aware systems could improve learning and task engagement by responding to emotional states. Additionally, the integration of these systems into video conferencing tools and productivity platforms expands on earlier works by Wiley and Getto (2015), who demonstrated real-time emotion detection in wearable technologies. The reviewed articles further affirm that emotional responsiveness enhances user-system trust and supports mental well-being, particularly in high-pressure digital environments. These conclusions also complement the model of empathetic system interaction proposed by Hokkanen and Väänänen-Vainio-Mattila (2015), in which systems that respond to emotional cues can increase motivation and reduce task abandonment. Compared to earlier studies that viewed emotion as peripheral to usability, the current literature situates emotional intelligence at the core of dynamic UX design in AIintegrated systems.

The role of AI in supporting hybrid work environments is a recurring theme across the reviewed studies, confirming the challenges and opportunities identified in previous works. Peres and Meira (2015) highlighted the fragmentation and complexity of hybrid workflows, which the current findings show are being mitigated through AI-driven UX optimization. Unlike early studies that emphasized physical-digital work separation, the reviewed articles illustrate a blended design paradigm where AI actively harmonizes experiences across locations and devices. Task automation, time-aware content delivery, and dynamic user modeling were shown to reduce discontinuity and enhance performance in hybrid contexts. These results extend the work of Weichert et al. (2018), who identified digital overload and cognitive stress as primary barriers to hybrid engagement. Furthermore, the real-time system adaptability observed in the reviewed studies reflects the predictive models discussed by Øvad et al. (2015), where AI uses historical data to adjust workflows and maintain continuity. AI's ability to tailor experiences based on bandwidth, location, or task priority confirms that hybrid work UX is no longer a passive consequence of remote access but a managed outcome of intelligent interface design. These findings signify a departure from traditional location-based systems and introduce a unified design logic where AI mediates and personalizes user experiences in real time across the hybrid spectrum.

Trust and transparency emerged as central UX determinants in AI-enhanced digital environments, reinforcing earlier calls for explainable AI and ethical system behavior. The reviewed studies support the findings of Bruun et al.(2018), who emphasized that perceived system transparency significantly influences user trust and engagement. In alignment with more recent scholarship by Sundberg and Seppänen (2014), the current literature confirms that AI systems that offer clear rationales, visual indicators of activity, and interactive feedback foster greater user confidence. Unlike early AI systems that functioned as opaque black boxes, today's workplace tools increasingly feature interfaces that disclose AI actions, logic paths, and

Vol 4, No 01, March 2023 Page No: 27-51

Doi: 10.63125/33gqpx45

confidence levels — directly addressing user concerns over fairness and autonomy. These findings also mirror the framework proposed by Rohn and Thompson (2014), who suggested that trust in AI is strengthened through customization, reversibility of decisions, and integration of human oversight. Furthermore, the reviewed studies indicate that users who feel they understand how AI makes decisions are more likely to accept and benefit from those decisions. This supports Law and Abrahão (2014) research, which demonstrated that perceived predictability enhances overall UX. Thus, the current findings not only validate earlier theoretical propositions but extend them into practical design recommendations, highlighting trust and transparency as essential pillars of effective AI-UX integration in enterprise platforms.

CONCLUSION

This systematic review provides a comprehensive synthesis of quantitative methods applied to loan portfolio optimization, revealing a dynamic and evolving field that integrates mathematical rigor with practical financial decision-making. The findings underscore the continued dominance of stochastic optimization models, which remain central to managing credit risk under uncertainty, while also highlighting the rapid rise of machine learning techniques that enhance predictive precision and borrower segmentation. Regulatory frameworks, particularly those stemming from Basel II and III, emerge as both constraints and structural inputs in portfolio modeling, shaping optimization objectives around capital adequacy, risk-weighted assets, and stress resilience. Sector-specific and institutional contexts further diversify the modeling landscape, with commercial banks, microfinance institutions, and development finance organizations adopting distinct optimization strategies tailored to their operational environments. The incorporation of real-time data systems and adaptive optimization mechanisms, driven by fintech innovations, represents a significant paradigm shift from static to dynamic portfolio management. Furthermore, the use of alternative data has expanded the informational frontier of credit modeling, offering new pathways for financial inclusion while raising critical ethical and governance considerations. The review ultimately concludes that effective loan portfolio optimization is no longer a function of isolated mathematical modeling but a multidisciplinary practice that requires the convergence of data science, financial regulation, ethical governance, and institutional strategy.

REFERENCES

- [1]. Anika Jahan, M., Md Shakawat, H., & Noor Alam, S. (2022). Digital transformation in marketing: evaluating the impact of web analytics and SEO on SME growth. *American Journal of Interdisciplinary Studies*, 3(04), 61-90. https://doi.org/10.63125/8t10v729
- [2]. Arafat Bin, F., Ripan Kumar, P., & Md Majharul, I. (2023). AI-Powered Predictive Failure Analysis In Pressure Vessels Using Real-Time Sensor Fusion: Enhancing Industrial Safety And Infrastructure Reliability. *American Journal of Scholarly Research and Innovation*, 2(02), 102-134. https://doi.org/10.63125/wk278c34
- [3]. Aranyi, G., & van Schaik, P. (2015). Modeling user experience with news websites. *Journal of the Association for Information Science and Technology*, 66(12), 2471-2493. https://doi.org/10.1002/asi.23348
- [4]. Ardito, C., Buono, P., Caivano, D., Costabile, M. F., & Lanzilotti, R. (2014). Investigating and promoting UX practice in industry: an experimental study. *International Journal of Human-Computer Studies*, 72(6), 542-551. https://doi.org/10.1016/j.ijhcs.2013.10.004
- [5]. Bai, Y., Huang, N., Xu, K., & Zhang, X. (2017). Resilience analytics of networks with dependency groups. 2017 2nd International Conference on System Reliability and Safety (ICSRS), NA(NA), 486-490. https://doi.org/10.1109/icsrs.2017.8272870
- [6]. Balachandran, A., Aggarwal, V., Halepovic, E., Pang, J., Seshan, S., Venkataraman, S., & Yan, H. (2014). MobiCom Modeling web quality-of-experience on cellular networks. *Proceedings of the 20th annual international conference on Mobile computing and networking, NA*(NA), 213-224. https://doi.org/10.1145/2639108.2639137
- [7]. Bao, Y., Liu, X., & Pande, A. (2015). ACML Data-Guided Approach for Learning and Improving User Experience in Computer Networks.
- [8]. Bao, Y., Wu, H., & Liu, X. (2017). From Prediction to Action: Improving User Experience With Data-Driven Resource Allocation. *IEEE Journal on Selected Areas in Communications*, 35(5), 1062-1075. https://doi.org/10.1109/jsac.2017.2680918
- [9]. Breuer, C., Hüffmeier, J., Hibben, F., & Hertel, G. (2019). Trust in teams: A taxonomy of perceived trustworthiness factors and risk-taking behaviors in face-to-face and virtual teams. *Human Relations*, 73(1), 3-34. https://doi.org/10.1177/0018726718818721

Vol 4, No 01, March 2023

Page No: 27-51

- [10]. Bruun, A., Larusdottir, M., Nielsen, L., Nielsen, P., & Persson, J. S. (2018). NordiCHI The role of UX professionals in agile development: a case study from industry. *Proceedings of the 10th Nordic Conference on Human-Computer Interaction*, NA(NA), 352-363. https://doi.org/10.1145/3240167.3240213
- [11]. Bu, L., Li, J., Li, F., Liu, H., & Li, Z. (2016). Wavelet coherence analysis of cerebral oxygenation signals measured by near-infrared spectroscopy in sailors: an exploratory, experimental study. *BMJ open*, 6(11), e013357-NA. https://doi.org/10.1136/bmjopen-2016-013357
- [12]. Chawla, N., MacGowan, R. L., Gabriel, A. S., & Podsakoff, N. P. (2019). Unplugging or staying connected? Examining the nature, antecedents, and consequences of profiles of daily recovery experiences. *The Journal of applied psychology*, 105(1), 19-39. https://doi.org/10.1037/apl0000423
- [13]. Chien, C.-F., Lin, K.-Y., & Yu, A. P.-I. (2014). User-experience of tablet operating system: An experimental investigation of Windows 8, iOS 6, and Android 4.2. *Computers & Industrial Engineering*, 73(73), 75-84. https://doi.org/10.1016/j.cie.2014.04.015
- [14]. da Silva, T. S., Silveira, M. S., Melo, C., & Parzianello, L. C. (2013). HCI (9) Understanding the UX designer's role within agile teams. In (Vol. NA, pp. 599-609). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-39229-0_64
- [15]. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. *MIS Quarterly*, 319-340.
- [16]. Fraser, J., & Plewes, S. (2015). Applications of a UX Maturity Model to Influencing HF Best Practices in Technology Centric Companies Lessons from Edison. *Procedia Manufacturing*, 3(NA), 626-631. https://doi.org/10.1016/j.promfg.2015.07.285
- [17]. Gray, C. M. (2016). CHI "It's More of a Mindset Than a Method": UX Practitioners' Conception of Design Methods. *Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, NA*(NA), 4044-4055. https://doi.org/10.1145/2858036.2858410
- [18]. Guo, C., Sun, L., Liao, W., & Li, Z. (2015). The Use of an Edible Mushroom-Derived Renewable Carbon Material as a Highly Stable Electrocatalyst towards Four-Electron Oxygen Reduction. *Materials (Basel, Switzerland)*, 9(1), 1-NA. https://doi.org/10.3390/ma9010001
- [19]. Guo, F., Liu, W. L., Cao, Y., Liu, F. T., & Li, M. L. (2015). Optimization Design of a Webpage Based on Kansei Engineering. *Human Factors and Ergonomics in Manufacturing & Service Industries*, 26(1), 110-126. https://doi.org/10.1002/hfm.20617
- [20]. Hart, J., & Sutcliffe, A. (2019). Is it all about the Apps or the Device?: User experience and technology acceptance among iPad users. *International Journal of Human-Computer Studies*, 130(NA), 93-112. https://doi.org/10.1016/j.ijhcs.2019.05.002
- [21]. Hokkanen, L., & Väänänen-Vainio-Mattila, K. (2015). XP UX Work in Startups: Current Practices and Future Needs. In (Vol. NA, pp. 81-92). Springer International Publishing. https://doi.org/10.1007/978-3-319-18612-2_7
- [22]. Hokkanen, L., Xu, Y., & Väänänen, K. (2016). MindTrek Focusing on user experience and business models in startups: investigation of two-dimensional value creation (Vol. NA). ACM. https://doi.org/10.1145/2994310.2994371
- [23]. Hwang, W., & Jung, E. (2019). Unpartnered Mothers' Work-Family Conflict and Parenting Stress: The Moderating Effects of Nonstandard Work Schedules. *Journal of family and economic issues*, 41(1), 158-171. https://doi.org/10.1007/s10834-019-09647-x
- [24]. Jeong, H.-Y. (2016). UX based adaptive e-learning hypermedia system (U-AEHS): an integrative user model approach. *Multimedia Tools and Applications*, 75(21), 13193-13209. https://doi.org/10.1007/s11042-016-3292-7
- [25]. Kakadia, D., & Ramirez-Marquez, J. E. (2020). Quantitative approaches for optimization of user experience based on network resilience for wireless service provider networks. *Reliability Engineering & System Safety*, 193, 106606. https://doi.org/10.1016/j.ress.2019.106606
- [26]. Kashfi, P., Nilsson, A., & Feldt, R. (2017). Integrating User eXperience practices into software development processes: implications of the UX characteristics. *PeerJ Computer Science*, 3(NA), e130-NA. https://doi.org/10.7717/peerj-cs.130
- [27]. Kelly, S. D. T., Suryadevara, N. K., & Mukhopadhyay, S. C. (2013). Towards the Implementation of IoT for Environmental Condition Monitoring in Homes. *IEEE Sensors Journal*, 13(10), 3846-3853. https://doi.org/10.1109/jsen.2013.2263379
- [28]. Lau, C.-S., Abdullah, M. Z., & Khor, C. Y. (2013). Optimization of the reflow soldering process with multiple quality characteristics in ball grid array packaging by using the grey-based Taguchi method. *Microelectronics International*, 30(3), 151-168. https://doi.org/10.1108/mi-09-2012-0067
- [29]. Law, E. L.-C., & Abrahão, S. (2014). Interplay between User Experience (UX) evaluation and system development. *International Journal of Human-Computer Studies*, 72(6), 523-525. https://doi.org/10.1016/j.ijhcs.2014.03.003
- [30]. Law, E. L.-C., & Larusdottir, M. (2015). Whose Experience Do We Care About? Analysis of the Fitness of Scrum and Kanban to User Experience. *International Journal of Human-Computer Interaction*, 31(9), 584-602. https://doi.org/10.1080/10447318.2015.1065693
- [31]. Law, E. L.-C., van Schaik, P., & Roto, V. (2014). Attitudes towards User Experience (UX) Measurement. *International Journal of Human-Computer Studies*, 72(6), 526-541. https://doi.org/10.1016/j.ijhcs.2013.09.006

Vol 4, No 01, March 2023

Page No: 27-51

- [32]. Lemon, K. N., & Verhoef, P. (2016). Understanding Customer Experience Throughout the Customer Journey. *Journal of Marketing*, 80(6), 69-96. https://doi.org/10.1509/jm.15.0420
- [33]. Li, G., & Shi, J. (2010). Wireless Sensor Network Technology and Its Application Potentials for Service Innovation in Supply Chain Management. *International Journal of Applied Logistics*, 1(4), 30-51. https://doi.org/10.4018/jal.2010100103
- [34]. Li, T., Guo, P., & Yang, S. (2016). Research on the Backward Customization Mode and its Operational Framework of Intelligent Product. *Procedia CIRP*, 56(NA), 401-405. https://doi.org/10.1016/j.procir.2016.10.064
- [35]. Li, Y., & Zhu, L. (2018). Optimization of user experience in interaction design through a Taguchi-based hybrid approach. *Human Factors and Ergonomics in Manufacturing & Service Industries*, 29(2), 126-140. https://doi.org/10.1002/hfm.20765
- [36]. Liikkanen, L. A. (2016). CHI Extended Abstracts UX Strategy as a Kick-starter for Design Transformation in an Engineering Company. *Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems*, NA(NA), 816-822. https://doi.org/10.1145/2851581.2851590
- [37]. Luther, L., Tiberius, V., & Brem, A. (2020). User Experience (UX) in Business, Management, and Psychology: A Bibliometric Mapping of the Current State of Research. *Multimodal Technologies and Interaction*, 4(2), 18. https://doi.org/10.3390/mti4020018
- [38]. Macdonald, C. (2019). Conference on Designing Interactive Systems User Experience (UX) Capacity-Building: A Conceptual Model and Research Agenda. *Proceedings of the 2019 on Designing Interactive Systems Conference*, NA(NA), 187-200. https://doi.org/10.1145/3322276.3322346
- [39]. MacDonald, C. M., Sosebee, J., & Srp, A. (2021). A Framework for Assessing Organizational User Experience (UX) Capacity. *International Journal of Human–Computer Interaction*, 38(11), 1064-1080. https://doi.org/10.1080/10447318.2021.1979811
- [40]. Mahmud, S., Rahman, A., & Ashrafuzzaman, M. (2022). A Systematic Literature Review on The Role Of Digital Health Twins In Preventive Healthcare For Personal And Corporate Wellbeing. *American Journal of Interdisciplinary Studies*, 3(04), 1-31. https://doi.org/10.63125/negjw373
- [41]. Maniruzzaman, B., Mohammad Anisur, R., Afrin Binta, H., Md, A., & Anisur, R. (2023). Advanced Analytics And Machine Learning For Revenue Optimization In The Hospitality Industry: A Comprehensive Review Of Frameworks. *American Journal of Scholarly Research and Innovation*, 2(02), 52-74. https://doi.org/10.63125/8xbkma40
- [42]. Märtin, C., Asta, P., & Bissinger, B. (2020). Optimizing the Digital Customer Journey Improving User Experience by Persona-Based and Situation-Aware Adaptations. In (Vol. NA, pp. 141-148). Springer International Publishing. https://doi.org/10.1007/978-3-030-47595-6_18
- [43]. Märtin, C., Bissinger, B. C., & Asta, P. (2021). Optimizing the digital customer journey—Improving user experience by exploiting emotions, personas and situations for individualized user interface adaptations. *Journal of Consumer Behaviour*, 22(5), 1050-1061. https://doi.org/10.1002/cb.1964
- [44]. Mashapa, J., Chelule, E., van Greunen, D., & Veldsman, A. (2013). INTERACT (2) Managing User Experience Managing Change. In (Vol. NA, pp. 660-677). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-40480-1_46
- [45]. Md Majharul, I., Arafat Bin, F., & Ripan Kumar, P. (2022). AI-Based Smart Coating Degradation Detection For Offshore Structures. *American Journal of Advanced Technology and Engineering Solutions*, 2(04), 01-34. https://doi.org/10.63125/1mn6bm51
- [46]. Md Masud, K. (2022). A Systematic Review Of Credit Risk Assessment Models In Emerging Economies: A Focus On Bangladesh's Commercial Banking Sector. *American Journal of Advanced Technology and Engineering Solutions*, 2(01), 01-31. https://doi.org/10.63125/p7ym0327
- [47]. Md Takbir Hossen, S., Ishtiaque, A., & Md Atiqur, R. (2023). AI-Based Smart Textile Wearables For Remote Health Surveillance And Critical Emergency Alerts: A Systematic Literature Review. *American Journal of Scholarly Research and Innovation*, 2(02), 1-29. https://doi.org/10.63125/ceqapd08
- [48]. Md Takbir Hossen, S., & Md Atiqur, R. (2022). Advancements In 3D Printing Techniques For Polymer Fiber-Reinforced Textile Composites: A Systematic Literature Review. *American Journal of Interdisciplinary Studies*, 3(04), 32-60. https://doi.org/10.63125/s4r5m391
- [49]. Meyer, G. G., Szirbik, N., & Wortmann, J. C. J. (2011). Production monitoring and control with intelligent products. *International Journal of Production Research*, 49(5), 1303-1317. https://doi.org/10.1080/00207543.2010.518742
- [50]. Ng, K. K. H., Lee, C. K. M., Chan, F. T. S., Chen, C.-H., & Qin, Y. (2020). A two-stage robust optimisation for terminal traffic flow problem. *Applied Soft Computing*, 89(106048), 106048-NA. https://doi.org/10.1016/j.asoc.2019.106048
- [51]. Noor Alam, S., Golam Qibria, L., Md Shakawat, H., & Abdul Awal, M. (2023). A Systematic Review of ERP Implementation Strategies in The Retail Industry: Integration Challenges, Success Factors, And Digital Maturity Models. *American Journal of Scholarly Research and Innovation*, 2(02), 135-165. https://doi.org/10.63125/pfdm9g02
- [52]. Øvad, T., Bornoe, N., Larsen, L. B., & Stage, J. (2015). OZCHI Teaching Software Developers to Perform UX Tasks. *Proceedings of the Annual Meeting of the Australian Special Interest Group for Computer Human Interaction, NA*(NA), 397-406. https://doi.org/10.1145/2838739.2838764

Vol 4, No 01, March 2023

Page No: 27-51

- [53]. Øvad, T., & Larsen, L. B. (2015). AGILE The Prevalence of UX Design in Agile Development Processes in Industry. 2015 Agile Conference, NA(NA), 40-49. https://doi.org/10.1109/agile.2015.13
- [54]. Peres, A. L., & de Lemos Meira, S. R. (2015). Towards a framework that promotes integration between the UX design and SCRUM, Aligned to CMMI. 2015 10th Iberian Conference on Information Systems and Technologies (CISTI), NA(NA), 1-4. https://doi.org/10.1109/cisti.2015.7170443
- [55]. Ripan Kumar, P., Md Majharul, I., & Arafat Bin, F. (2022). Integration Of Advanced NDT Techniques & Implementing QA/QC Programs In Enhancing Safety And Integrity In Oil & Gas Operations. *American Journal of Interdisciplinary Studies*, 3(02), 01-35. https://doi.org/10.63125/9pzxgq74
- [56]. Rohn, J. A., & Thompson, C. F. (2014). Managing UX teams. *CHI '14 Extended Abstracts on Human Factors in Computing Systems*, NA(NA), 1151-1154. https://doi.org/10.1145/2559206.2566672
- [57]. Roksana, H. (2023). Automation In Manufacturing: A Systematic Review Of Advanced Time Management Techniques To Boost Productivity. *American Journal of Scholarly Research and Innovation*, 2(01), 50-78. https://doi.org/10.63125/z1wmcm42
- [58]. Roto, V., Kaasinen, E., Nuutinen, M., & Seppänen, M. (2016). CHI Extended Abstracts UX Expeditions in Business-to-Business Heavy Industry: Lessons Learned. *Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems*, NA(NA), 833-839. https://doi.org/10.1145/2851581.2851600
- [59]. Sauro, J., Johnson, K., & Meenan, C. (2017). CHI Extended Abstracts From Snake-Oil to Science: Measuring UX Maturity. *Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems, NA*(NA), 1084-1091. https://doi.org/10.1145/3027063.3053350
- [60]. Sauro, J., & Lewis, J. R. (2016). Quantifying the User Experience, Second Edition: Practical Statistics for User Research (Vol. NA). NA. https://doi.org/NA
- [61]. Schlatter, T., & Levinson, D. (2013). Visual Usability: Principles and Practices for Designing Digital Applications (Vol. NA). NA. https://doi.org/NA
- [62]. Shahan, A., Anisur, R., & Md, A. (2023). A Systematic Review Of AI And Machine Learning-Driven IT Support Systems: Enhancing Efficiency And Automation In Technical Service Management. *American Journal of Scholarly Research and Innovation*, 2(02), 75-101. https://doi.org/10.63125/fd34sr03
- [63]. Sundberg, H.-R., & Seppänen, M. (2014). *MindTrek Pitfalls in designing and selling UX: cases in MEI* (Vol. NA). ACM. https://doi.org/10.1145/2676467.2676473
- [64]. Teka, D., Dittrich, Y., Kifle, M., Ardito, C., & Lanzilotti, R. (2017). User Involvement and Usability Evaluation in Ethiopian Software Organizations. *THE ELECTRONIC JOURNAL OF INFORMATION SYSTEMS IN DEVELOPING COUNTRIES*, 83(1), 1-19. https://doi.org/10.1002/j.1681-4835.2017.tb00616.x
- [65]. Tomlin, W. C. (2018). UX Optimization Overview. In (pp. 1-10). Apress. https://doi.org/10.1007/978-1-4842-3867-7_1
- [66]. Tonoy, A. A. R., & Khan, M. R. (2023). The Role of Semiconducting Electrides In Mechanical Energy Conversion And Piezoelectric Applications: A Systematic Literature Review. *American Journal of Scholarly Research and Innovation*, 2(01), 01-23. https://doi.org/10.63125/patvqr38
- [67]. Treiber, L. A., & Davis, S. N. (2012). The Role of 'Workplace Family' Support on Worker Health, Exhaustion and Pain. *Community, Work & Family*, 15(1), 1-27. https://doi.org/10.1080/13668803.2011.580123
- [68]. Tseng, M.-L., Lin, Y. H., Lim, M. K., & Teehankee, B. L. (2015). Using a hybrid method to evaluate service innovation in the hotel industry. *Applied Soft Computing*, 28(NA), 411-421. https://doi.org/10.1016/j.asoc.2014.11.048
- [69]. Tullis, T. S., & Albert, W. (2013). Measuring the User Experience, Second Edition: Collecting, Analyzing, and Presenting Usability Metrics (Vol. NA). NA. https://doi.org/NA
- [70]. Vakola, M., Petrou, P., & Katsaros, K. (2020). Work Engagement and Job Crafting as Conditions of Ambivalent Employees' Adaptation to Organizational Change. The Journal of Applied Behavioral Science, 57(1), 57-79. https://doi.org/10.1177/0021886320967173
- [71]. van de Sand, F., Frison, A.-K., Zotz, P., Riener, A., & Holl, K. (2020). *Management for Professionals User Experience Is Brand Experience: The Psychology Behind Successful Digital Products and Services* (Vol. NA). Springer International Publishing. https://doi.org/10.1007/978-3-030-29868-5
- [72]. van Kollenburg, J., Bogers, S., Deckers, E., Frens, J., & Hummels, C. (2017). CHI How Design-inclusive UXR Influenced the Integration of Project Activities: Three Design Cases from Industry. *Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems*, NA(NA), 1408-1418. https://doi.org/10.1145/3025453.3025541
- [73]. Vanhala, M., Lu, C., Peltonen, J., Sundqvist, S., Nummenmaa, J., & Järvelin, K. (2020). The usage of large data sets in online consumer behaviour: A bibliometric and computational text-mining–driven analysis of previous research. *Journal of Business Research*, 106(NA), 46-59. https://doi.org/10.1016/j.jbusres.2019.09.009
- [74]. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. *MIS Quarterly*, 425-478.
- [75]. Vermeeren, A. P. O. S., Law, E. L.-C., Roto, V., Obrist, M., Hoonhout, J., & Väänänen-Vainio-Mattila, K. (2010). NordiCHI User experience evaluation methods: current state and development needs. *Proceedings of the 6th Nordic Conference on Human-Computer Interaction: Extending Boundaries, NA*(NA), 521-530. https://doi.org/10.1145/1868914.1868973

Vol 4, No 01, March 2023

Page No: 27-51

- [76]. Waltman, L., van Eck, N. J., & Noyons, E. C. M. (2010). A unified approach to mapping and clustering of bibliometric networks A unified approach to mapping and clustering of bibliometric networks. *Journal of Informetrics*, 4(4), 629-635. https://doi.org/10.1016/j.joi.2010.07.002
- [77]. Weichert, S., Quint, G., & Bartel, T. (2018). Quick Guide Quick Guide UX Management: So verankern Sie Usability und User Experience im Unternehmen (Vol. NA). Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-22595-7
- [78]. Wiley, K., & Getto, G. (2015). A UX workflow for building awesome applications. *Communication Design Quarterly*, 3(3), 49-52. https://doi.org/10.1145/2792989.2792996
- [79]. Wontorczyk, A., & Rożnowski, B. (2022). Remote, Hybrid, and On-Site Work during the SARS-CoV-2 Pandemic and the Consequences for Stress and Work Engagement. *International journal of environmental research and public health*, 19(4), 2400-2400. https://doi.org/10.3390/ijerph19042400
- [80]. Zarour, M. (2017). User Experience Aspects and Dimensions: Systematic Literature Review. *International Journal of Knowledge Engineering*, NA(NA), 52-59. https://doi.org/10.18178/ijke.2017.3.2.087