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Abstract

This study investigates how blockchain-enabled security protocols and artificial intelligence (Al)-based threat
analytics jointly influence the perceived security performance of next-generation Internet of Things (IoT)
networks. As IoT ecosystems expand across critical sectors, the limitations of traditional security models
highlight the need for decentralized trust mechanisms and intelligent, adaptive intrusion detection. Drawing
on theories of IoT security requirements, cyber-risk management, and blockchain-Al convergence, the study
develops a conceptual framework comprising four constructs: Blockchain-Enabled Security Controls, AI-Driven
Threat Analytics, IoT Cyber-Risk Management Maturity, and Contextual Factors, all hypothesized to affect IoT
Security Performance. A quantitative, cross-sectional, case-study-based research design was employed, using a
structured Likert five-point survey administered to 160 professionals actively engaged in IoT architecture,
cybersecurity operations, and system administration. Reliability validation, correlation analysis, and multiple
regression modeling were conducted to evaluate the relationships among constructs and to test three hypotheses
concerning individual and interactive effects. Descriptive results indicated strong adoption of both blockchain
and Al security capabilities, with mean construct scores exceeding the midpoint, and IoT Security Performance
achieving the highest mean (4.12). Correlation analysis showed strong positive associations among all variables,
especially between Al-based analytics and IoT Security Performance (r = 0.68). Regression results demonstrated
that Blockchain-Enabled Security Controls (f = 0.32, p <.001) and Al-Driven Threat Analytics (f = 0.41, p <
.001) each exerted significant positive effects on IoT Security Performance, while IoT Cyber-Risk Management
Maturity contributed additional explanatory power (f = 0.19, p = .003). Importantly, an interaction term
representing the coexistence of high blockchain, and Al capability revealed a positive and statistically significant
effect (B = 0.11, p = .033), increasing model explanatory power (AR? = 0.03) and confirming that blockchain
and Al function synergistically rather than independently. Owverall, the findings empirically validate the
complementary roles of blockchain and Al in enhancing IoT confidentiality, integrity, availability, and
resilience. The study contributes to IoT security scholarship by operationalizing and testing constructs that have
largely been addressed conceptually in prior work. It further offers practical insights for organizations seeking
integrated, risk-informed security architectures for large-scale IoT environments.
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INTRODUCTION

Internet of Things (IoT) generally refers to a global network of uniquely identifiable physical and virtual
objects that are equipped with sensing, processing, and communication capabilities and interconnected
over heterogeneous networks (Atzori et al., 2010). Through technologies such as RFID, embedded
sensors, wireless communication, and cloud platforms, IoT systems continuously generate and
exchange data across application domains including smart cities, healthcare, logistics, industrial
automation, and consumer environments (Al-Fuqaha et al., 2015). The scale of this ecosystem is
reflected in projections of tens of billions of connected devices worldwide and trillions of dollars in
associated economic value, underscoring IoT’s international significance for economic growth, social
services, and critical infrastructure management (Misra et al., 2016). At the same time, this pervasive
interconnection produces an expanded attack surface: constrained devices, heterogeneous protocols,
and distributed deployments expose new security weaknesses that traditional Internet security
mechanisms do not fully address (Roman et al.,, 2013). As next-generation IoT networks become
increasingly data-driven and tightly integrated with 5G, edge computing, and cyber-physical systems,
securing these environments becomes a central prerequisite for their sustained adoption across
jurisdictions and industry sectors (Meidan et al., 2018).

Figure 1: Fundamental IoT Communication Model
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The security and privacy challenges of IoT have been systematically explored from architectural,
protocol, and data perspectives, revealing complex, multi-layered vulnerability patterns. Surveys of
IoT architectures and industrial deployments emphasize that resource constraints, device mobility, and
the use of proprietary stacks complicate the deployment of standard cryptographic and access-control
solutions at scale (Mousavi et al., 2020). From a security viewpoint, studies identify confidentiality,
integrity, availability, authentication, authorization, and trust management as core requirements that
are difficult to enforce consistently across perception, network, and application layers (Sicari et al.,
2015). Security taxonomies show that IoT systems are exposed to routing attacks, Sybil attacks, side-
channel attacks, physical tampering, and protocol-specific threats, with many attacks exploiting weak
device management and unpatched firmware (Xu et al., 2014). Data-centric analyses further highlight
that sensitive telemetry, control commands, and user context data can be intercepted, modified, or
exfiltrated, creating both operational and regulatory risks in sectors such as healthcare, transportation,
and energy (Hou et al., 2019). As IoT deployments extend globally, cross-border data flows and
heterogeneous regulatory regimes complicate compliance with privacy and cybersecurity standards,
intensifying the need for robust, interoperable security protocols that retain effectiveness under varied
legal and infrastructural conditions (Ferrag et al., 2020).

A large body of work has focused on security frameworks, cryptographic mechanisms, and intrusion
detection for IoT, yet significant constraints remain. Protocol-level studies survey secure routing, key-
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management schemes, and lightweight authentication, showing that many mechanisms either impose
excessive computational overhead on constrained devices or fail to address sophisticated multi-vector
attacks (Abdulla & Ibne, 2021; Granjal et al., 2015). Cryptography-oriented surveys stress the
importance of tailoring symmetric and asymmetric algorithms, as well as hybrid approaches, to meet
the trade-offs among energy consumption, memory footprint, and latency in IoT environments
(Habibullah & Foysal, 2021; Hassan et al., 2019). Existing work on trust management demonstrates that
fuzzy-logic-based and reputation-based schemes can capture context-aware trust relationships among
devices, but these schemes often rely on local observations and can be vulnerable to collusion or data
poisoning (Alshehri & Hussain, 2019; Sanjid & Farabe, 2021). Research on IoT-specific intrusion
detection systems (IDS) highlights that host-based and network-based IDS must accommodate
proprietary protocols, intermittent connectivity, and high volumes of streaming data while remaining
deployable at the network edge (Sarwar, 2021; Zarpelao et al., 2017). Across these lines of work, there
is continued emphasis on scalable, interoperable security architectures that can be realistically
integrated into large-scale, heterogeneous IoT deployments operating under real-world resource and
regulatory constraints (Chen et al., 2020; Musfiqur & Saba, 2021).

Artificial intelligence (AI) and, more specifically, machine learning (ML) and deep learning (DL), have
been proposed as key enablers for intelligent IoT security monitoring and decision-making. Surveys of
ML methods for cyber-security and intrusion detection show that supervised, unsupervised, and
hybrid models can effectively classify malicious traffic, detect anomalies, and support network
forensics in high-dimensional data spaces (Ahmed et al., 2016). In the IoT context, ML and DL-based
IDSs are used to learn device-specific baselines and detect deviations that may indicate botnet
infections, DDoS attacks, or unauthorized control commands (Alaba et al., 2017). Deep learning surveys
report that architectures such as autoencoders, recurrent neural networks, and convolutional networks
improve the detection of complex, evolving attack patterns by modeling non-linear relationships in
network flows and system logs (Al-Garadi et al., 2020; Omar & Rashid, 2021). At the same time, this
literature acknowledges challenges with explainability, training-data quality, and adversarial
manipulation, especially when models are trained on data originating from untrusted IoT devices or
federated deployments. Nonetheless, the integration of Al-driven detection with real-time monitoring,
edge analytics, and automated response mechanisms is increasingly viewed as central to maintaining
security in dense and dynamic IoT networks (Christidis & Devetsikiotis, 2016; MRedwanul et al., 2021).
In parallel, blockchain has emerged as a distributed, tamper-resistant ledger technology with promising
applications for IoT security. Studies on blockchains and smart contracts for IoT illustrate how
consensus protocols, immutable ledgers, and decentralized identity management can support secure
data sharing, verifiable logging, and fine-grained access control in heterogeneous IoT ecosystems
(Conoscenti etal., 2016; Tarek & Praveen, 2021). Systematic reviews of blockchain-IoT integration argue
that distributed ledgers can underpin trust management, secure firmware updates, and auditable
device interactions, enabling participants from different organizations and jurisdictions to verify data
provenance and policy compliance without reliance on a single trusted intermediary (Gubbi et al.,
2013). Work on privacy-preserving blockchain-based IoT systems further analyzes techniques such as
anonymization, encryption, mixing, and private smart contracts to mitigate linkage attacks and protect
sensitive metadata in ledger-recorded transactions (Zaman & Momena, 2021; Samaila et al., 2018).
However, blockchain deployments in IoT must handle issues such as latency, throughput, storage
overhead, and energy consumption on constrained devices, which has prompted research into
lightweight consensus protocols, off-chain storage, and hierarchical or consortium-chain architectures
tailored to IoT scenarios (Tewari & Gupta, 2020).

Recent scholarship increasingly points to the complementary roles of Al and blockchain for securing
next-generation IoT networks. Surveys of machine and deep learning for IoT security present Al as a
mechanism for security intelligence, enabling predictive analytics, behavior modeling, and adaptive
threat detection over large volumes of device and network data (Rony, 2021; Yang et al.,, 2019).
Blockchain-centric studies, in contrast, conceptualize the ledger as a trusted substrate for data integrity,
identity management, and decentralized coordination among devices, gateways, and services
(Christidis & Devetsikiotis, 2016). Integrative perspectives suggest that combining Al-driven analytics
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with blockchain-backed data and smart contracts can result in security protocols where detection
models are trained on verifiable data streams, model updates are auditable, and enforcement actions
such as revoking device credentials or reconfiguring access policies are encoded as smart contracts
executed under agreed rules (Hassan et al., 2019). In this combined paradigm, Al contributes adaptivity
and pattern recognition, while blockchain contributes tamper-resistant logging and distributed trust,
forming a layered defense structure suitable for large-scale, cross-organizational IoT networks in
domains such as smart manufacturing, energy, and transportation.

The present study is guided by a set of clearly defined objectives that structure its overall design, data
collection strategy, and analytical procedures. The primary objective is to empirically examine how
blockchain-enabled security protocols and Al-based security analytics contribute to the security
performance of next-generation IoT networks in real organizational contexts. To achieve this, the study
first seeks to operationalize key constructs such as blockchain security capability, Al-based threat
detection capability, organizational and technical readiness, and IoT network security performance
through a rigorously designed Likert 5-point survey instrument administered within a case-study
setting. A second objective is to quantify the individual effects of blockchain security capability and AI-
based security capability on perceived IoT network security performance, using descriptive statistics
to profile respondents and deployments, correlation analysis to explore the strength and direction of
associations among constructs, and regression modeling to estimate their predictive power. A third
objective is to evaluate the combined influence of blockchain and AI when considered as
complementary security enablers, examining whether their joint presence is associated with enhanced
security outcomes compared with the presence of either capability alone. A fourth objective is to assess
the role of organizational and technical readiness as a contextual factor that shapes how organizations
experience and evaluate blockchain- and Al-enabled IoT security, by examining whether readiness-
related variables strengthen or weaken the observed relationships in the regression models. A further
objective is to provide a structured empirical characterization of security practices, architectural
choices, and decision criteria used by practitioners responsible for securing next-generation IoT
deployments in the selected case context. Together, these objectives establish a coherent agenda focused
on measurement, comparison, and explanation: measuring perceptions of key capabilities and
outcomes, comparing the relative contributions of blockchain and Al, and explaining how their
interaction and organizational context relate to perceived IoT network security performance in large-
scale, connected environments.

LITERATURE REVIEW

The literature on securing next-generation Internet of Things (IoT) networks has expanded rapidly,
reflecting the convergence of three major domains: IoT architectures and their security challenges,
blockchain-enabled security mechanisms, and Al-driven threat detection and analytics. As IoT
deployments scale across industrial automation, smart cities, healthcare, transportation, and energy
systems, they introduce vast numbers of heterogeneous, resource-constrained devices communicating
over diverse protocols and infrastructures. This environment creates complex attack surfaces that
traditional perimeter-based and centralized security models struggle to handle, particularly with
respect to device authentication, data integrity, access control, and real-time anomaly detection. In
response, researchers have explored lightweight cryptographic schemes, trust and reputation models,
intrusion detection systems, and secure communication protocols tailored to IoT constraints, yet
persistent issues of scalability, interoperability, and manageability continue to appear in empirical and
conceptual work. Alongside these developments, blockchain has emerged as a promising distributed
ledger technology that can provide tamper-resistant logging, decentralized identity and key
management, and transparent execution of access policies through smart contracts, offering a way to
redistribute trust and reduce reliance on single points of failure in IoT ecosystems. At the same time,
advances in artificial intelligence particularly machine learning and deep learning have enabled data-
driven approaches to network and device security, where models learn behavioral baselines, detect
anomalies, classify malicious traffic, and support automated or semi-automated response. A growing
stream of research examines how these two paradigms blockchain and Al can be combined to form
integrated security frameworks in which blockchain ensures the integrity and non-repudiation of
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security-relevant data and policies, while Al provides adaptive, predictive analytics over those data to
detect and mitigate evolving threats. However, much of this work remains conceptual, architectural, or
limited to simulations and testbeds, with comparatively fewer studies providing quantitative, case-
based evidence on how organizations perceive and experience the security benefits of blockchain- and
Al-enabled IoT solutions. This literature review therefore synthesizes prior work across these three
domains to identify key constructs, relationships, and gaps that inform the conceptual framework and
hypotheses of the present study.

Security Challenges in Next-Generation IoT Networks

Next-generation Internet of Things (IoT) networks introduce an unprecedented spectrum of security
challenges because they interconnect billions of heterogeneous, resource-constrained devices across
mission-critical domains such as healthcare, transportation, manufacturing, and energy. Rather than
operating as isolated sensor deployments, modern IoT ecosystems are deeply integrated with cloud
platforms, edge computing nodes, and legacy enterprise systems, which expands the attack surface and
magnifies the potential impact of breaches. Survey studies show that the combination of large-scale
connectivity, heterogeneity of protocols, and frequent mobility of devices makes traditional perimeter-
based defenses insufficient, as adversaries can exploit weakly protected nodes to pivot across the entire
network and target high-value assets (Radoglou-Grammatikis et al., 2019). Moreover, many low-cost
IoT devices are designed with minimal security features due to strict cost, power, and computation
constraints, resulting in inadequate authentication, weak or hard-coded credentials, and lack of secure
boot mechanisms. These design choices enable large botnets, such as those used in distributed denial-
of-service (DDoS) attacks, where compromised endpoints are weaponized to overwhelm services and
disrupt critical infrastructure. Comprehensive reviews of IoT security concerns further emphasize that
security requirements confidentiality, integrity, availability, authentication, and non-repudiation are
often addressed in a fragmented way, with no consistent end-to-end framework spanning device,
network, and application layers (Leloglu, 2017).

Figure 2: Major Vulnerabilities in Smart IoT Domains and Cyber-Physical Systems
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From an architectural perspective, IoT security challenges manifest differently across the perception,
network, and application layers, and the interplay between these layers complicates mitigation
strategies. At the perception layer, constrained sensors and actuators deployed in often unprotected
physical environments are exposed to tampering, node capture, side-channel attacks, and invasive
hardware probing. At the network layer, lightweight communication protocols such as MQTT, CoAP,
and 6LoWPAN may lack robust encryption or mutual authentication by default, making traffic
vulnerable to eavesdropping, spoofing, replay, routing manipulation, and man-in-the-middle attacks.
At the application layer, cloud-based analytics, data aggregation services, and APIs face threats such
as unauthorized access, privilege escalation, data exfiltration, and insecure third-party integrations. A
layered survey of IoT security highlights how these threats are tightly coupled: a compromise at the
device level can propagate upward to control platforms, while vulnerabilities in cloud services can be
exploited to manipulate or disable field devices (Yousuf & Mir, 2019).

In addition, multi-tenant environments and cross-domain data sharing introduce complex trust
relationships between device vendors, platform providers, and application developers, increasing the
probability of misconfigurations and inconsistent policy enforcement. Foundational work on IoT
security and privacy stresses that the ubiquity and pervasiveness of IoT deployments mean that any
unaddressed vulnerability can rapidly scale into systemic risk, especially when exploited in
coordinated campaigns (Abomhara & Kgien, 2014). Beyond purely technical vulnerabilities, next-
generation IoT security challenges are strongly shaped by operational practices, human behavior, and
governance gaps. Empirical analyses reveal that many breaches stem from poor device lifecycle
management, including failure to patch firmware, continued use of factory-default passwords, insecure
decommissioning, and lack of asset visibility in large deployments (Shaikh & Aditya, 2021; Tawalbeh
etal., 2020). These weaknesses are amplified in contexts where organizations lack standardized security
policies for IoT, or where responsibility is fragmented between operations, IT, and third-party service
providers. Privacy risks emerge when pervasive sensing, continuous monitoring, and fine-grained
localization enable profiling of individuals, inference of sensitive behavioral patterns, or unauthorized
sharing of personal data. Reviews of IoT security concerns underline that regulatory compliance alone
is insufficient if not accompanied by robust technical safeguards and security-by-design principles that
account for resource constraints and real-world deployment conditions (Leloglu, 2017; Sudipto &
Mesbaul, 2021).

Furthermore, as IoT systems increasingly interoperate with other cyber-physical infrastructures,
cascading failures become a central challenge: attacks on smart grids, connected vehicles, or industrial
control systems can propagate across sectors due to tightly coupled data and control flows. Integrative
survey work argues that securing this evolving landscape requires coordinated measures across
standardization, device certification, security monitoring, and adaptive defenses capable of responding
to dynamic, large-scale threats in heterogeneous environments (Zaki, 2021; Tawalbeh et al., 2020).
Blockchain-Enabled Security Protocols for IoT Networks

Blockchain-enabled security protocols have been widely explored as a way to overcome the structural
weaknesses of centralized IoT security architectures, particularly in areas such as identity management,
access control, and integrity assurance. At a conceptual level, blockchain acts as a distributed, append-
only ledger where transactions representing device registrations, key updates, policy changes, or data
access events are validated through consensus and stored immutably across multiple nodes. This
distributed trust model reduces reliance on a single security gateway or cloud platform and thereby
mitigates single points of failure and certain insider threats (Ali et al., 2019). For IoT environments,
blockchain-based security protocols often encode access rules and verification logic in smart contracts
that automatically enforce authentication, authorization, and logging without continuous human
intervention or central authority. Surveys of blockchain-IoT integration highlight that this paradigm
can support fine-grained data provenance, tamper-evident audit trails, and non-repudiation for
sensitive transactions, while also enabling token-based economic incentives for secure behavior among
participating devices and stakeholders (Cui et al., 2019). At the same time, these studies emphasize that
raw replication of public, proof-of-work blockchains into IoT is impractical due to bandwidth, latency,
and energy overheads, motivating the design of tailored protocols, lightweight consensus mechanisms,
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and hierarchical architectures specifically optimized for constrained devices (Makhdoom et al., 2019).

Figure 3: Core Components of Blockchain-Based Security Architecture for IoT Systems
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Architectural research on blockchain-enabled IoT security proposes several patterns that reorganize
how security functions are distributed across edge, fog, and cloud tiers. One prominent line of work
introduces local or application-specific blockchains in which a relatively powerful node such as a home
hub, industrial gateway, or edge server acts as a miner or validator on behalf of many low-power IoT
devices, maintaining a private ledger of intra-domain transactions (Dorri et al., 2017). In these designs,
IoT devices do not participate directly in consensus; instead, they submit signed transactions (e.g.,
“sensor X sends data to controller Y under policy Z”) that are batched and recorded by the gateway,
significantly reducing on-device computation while still ensuring data integrity and auditability. In
parallel, other architectures use public or consortium blockchains as a global trust backbone that
interconnects multiple local IoT domains, enabling cross-organizational authentication, roaming, and
policy federation for devices that move between networks or share data across enterprise boundaries
(Ali etal., 2019). Performance evaluation studies of such architectures show that when block validation
and smart-contract execution are carefully engineered e.g., by limiting block size, adjusting
confirmation rules, or offloading heavy cryptographic operations to edge servers blockchain-based
access control and logging can meet latency requirements for many non-real-time IoT applications
while adding strong guarantees of integrity and traceability (Novo, 2018). Beyond basic integrity and
access control, blockchain-enabled security protocols increasingly aim to provide holistic security
services that align with the lifecycle of IoT devices, data, and services. Frameworks surveyed in recent
literature incorporate blockchain into device onboarding, firmware update distribution, and
decommissioning workflows, so that each critical event such as ownership transfer, configuration
change, or revocation is recorded as an immutable transaction, simplifying forensic analysis and
compliance reporting (Makhdoom et al., 2019).

Complementary work focuses on integrating blockchain with higher-layer security functions, such as
reputation systems, trust management, and secure data marketplaces, using smart contracts to mediate
data sharing agreements and enforce privacy-preserving access policies in multi-stakeholder
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ecosystems (Ali et al., 2019). In this view, blockchain is not only a secure log but also a programmable
coordination substrate that supports decentralized security decision-making across heterogeneous
organizations. At the same time, systematic reviews caution that deployment of blockchain-enabled
protocols must carefully consider scalability, storage growth, key management, and the potential
aggregation of sensitive metadata on-chain, recommending hybrid models where only hashes,
pointers, or policy identifiers are stored on the ledger while bulk data remain off-chain in encrypted
repositories (Novo, 2018). These insights collectively frame blockchain-enabled security protocols as a
promising yet design-sensitive approach to strengthening the confidentiality, integrity, availability,
and accountability of next-generation IoT networks.
Al-Based Intrusion Detection in IoT Networks
Artificial intelligence-driven intrusion detection has emerged as a key response to the limitations of
traditional signature- and rule-based approaches, particularly in complex and dynamic networked
environments. Early surveys on intrusion detection systems (IDS) emphasize that classical IDS
architectures struggle to keep pace with diverse, rapidly evolving attack patterns and high traffic
volumes, which has motivated the use of intelligent, data-driven models for automated threat detection
and classification (Liao et al., 2013). In anomaly-based IDS, models learn a representation of “normal”
network or host behavior and flag deviations as potential intrusions, enabling the detection of
previously unseen or zero-day attacks (Garcia-Teodoro et al., 2009). Machine learning (ML) techniques
such as decision trees, support vector machines, k-nearest neighbors, and ensemble classifiers have
been widely applied to IDS, providing systematic methods for feature selection, classification, and
performance evaluation across benchmark datasets (Haq et al., 2015). These surveys highlight both the
promise and the complexity of ML-based intrusion detection: while ML can capture subtle statistical
regularities in high-dimensional traffic data, it also requires careful handling of imbalanced datasets,
feature engineering, and hyperparameter tuning. Within this broader landscape, Al-based security
analytics encompasses not only classification of malicious traffic but also clustering, outlier detection,
and correlation analysis of security events, which together contribute to improved situation awareness
and decision support for security operators. As IoT networks grow in scale and heterogeneity, these
intelligent analytics capabilities become increasingly important for filtering massive telemetry streams,
prioritizing alerts, and supporting real-time or near-real-time response.
Deep learning (DL) has been introduced into intrusion detection to address some of the shortcomings
of shallow ML models, particularly their dependence on manual feature engineering and limited
capacity to model complex nonlinear relationships in network data. A comprehensive survey of IDS
research documents how deep architectures such as autoencoders, deep belief networks, and
convolutional neural networks can automatically learn hierarchical features from raw or minimally
processed traffic records, improving detection of sophisticated or low-signal attacks (Shone et al., 2018).
Experimental work on deep IDS demonstrates that deep neural networks can achieve high accuracy
and detection rates when trained on benchmark datasets such as NSL-KDD or modern flow-based
corpora, often outperforming conventional classifiers in multi-class attack recognition (Shone et al.,
2018). In these studies, performance is typically quantified using metrics such as accuracy and F1-score;
for instance, accuracy is computed as
TP+TN

ACCUracy = TN ¥ FP + PN’
where TP, TN, FP, and FNdenote true positives, true negatives, false positives, and false negatives
respectively. Such metrics allow rigorous comparison of alternative model architectures and feature
representations under varying attack mixes and traffic conditions. At the same time, investigations into
adversarial robustness reveal that deep IDS models can be vulnerable to carefully crafted perturbations
of feature values, which cause misclassification while preserving the overall statistical profile of traffic
(Hagq et al., 2015; Liao et al., 2013; Shone et al., 2018). This line of research underscores that Al-based
security analytics must consider not only baseline detection performance but also resilience against
adversarial manipulation, interpretability of model decisions, and the operational implications of false
positives and false negatives in production networks.
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Figure 4: AI-Based Intrusion Detection in IoT Networks
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Within IoT environments, Al-based intrusion detection and security analytics must contend with
additional constraints, including limited device resources, protocol heterogeneity, and the need to
operate at or near the network edge. Work specifically targeting IoT networks shows that deep learning
models can be tailored to detect malicious traffic patterns characteristic of IoT-specific attacks, such as
botnet-based distributed denial-of-service, unauthorized device control, and protocol abuse, while still
meeting latency requirements through careful model design and deployment strategies (Thamilarasu
& Chawla, 2019). In their IoT-focused framework, intrusion detection is delivered “as a service,” with
deep models deployed on edge or gateway nodes that monitor traffic from constrained devices,
enabling protocol-agnostic detection and scalable security monitoring across heterogeneous subnets.
This approach aligns with earlier observations that anomaly-based IDS techniques, when combined
with flexible ML models, can provide adaptive defenses capable of tracking evolving attack behaviors
in large-scale networks (Garcia-Teodoro et al., 2009). Survey work on ML for IDS highlights that, in
addition to model accuracy, practical deployments must address issues such as feature collection
overhead, model update frequency, dataset representativeness, and integration with existing security
information and event management (SIEM) workflows (Wang, 2018). For next-generation IoT
networks, these insights suggest that Al-based security analytics should be evaluated not only in terms
of pure detection metrics, but also in terms of their contribution to overall IoT security performance,
their compatibility with resource-constrained devices, and their ability to interoperate with
complementary mechanisms such as blockchain-enabled logging and access control. In the present
study, these perspectives inform the conceptualization of Al-based threat detection capability as a
measurable construct, one that can be linked quantitatively via correlation and regression modeling to
perceived IoT network security performance in blockchain-enhanced environments.

Theoretical Foundation

The theoretical and conceptual framework for this study integrates IoT security requirement models,
cyber-risk management approaches and blockchain-IoT convergence theory into a single causal
structure that can be tested using regression analysis. At the foundation, IoT value-creation models
emphasize that connected devices only deliver sustainable benefits when risks particularly security and
privacy risks are systematically governed alongside operational and business objectives (Lee, 2020). In
parallel, risk-focused analyses of IoT ecosystems argue that the heterogeneity of devices, protocols and
data flows introduces distinct “risk vectors” that must be explicitly modeled and prioritized, rather
than treated as generic network risks (Kandasamy et al., 2020). Building on these perspectives, this
research conceptualizes IoT Security Performance as the main dependent construct capturing perceived
improvement in confidentiality, integrity, availability and resilience of next-generation IoT networks
due to the combined deployment of blockchain-enabled protocols and Al-based security analytics.
Complementary multi-layer frameworks for IoT cybersecurity position security controls at device,
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network, platform and application layers and highlight the need to coordinate cryptographic,
architectural and organizational safeguards within a unified risk management model (Lee & Lee, 2015).
In this study, those layered views are abstracted into measurable latent constructs that can be
operationalized through Likert-scale items and examined empirically.

Figure 5: A Flowchart in Digital Vector Graphic Format
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Within this overarching perspective, blockchain-enabled security is conceptualized as a core
independent construct that modifies how identity, authorization, logging and data sharing are
managed in distributed IoT environments. From a theoretical standpoint, blockchain’s decentralized,
tamper-evident ledger, public-key cryptography, and consensus mechanisms reduce the dependence
on single points of trust and enable auditable, immutable transaction histories for devices and services
(Kshetri, 2017). This aligns with IoT risk frameworks that stress the importance of verifiable identity,
trustworthy logging and non-repudiation as risk controls that can be mapped directly to high-priority
risk vectors such as spoofing, unauthorized configuration changes or data manipulation (Pal et al.,
2020). At the same time, security requirement studies for IoT underline that blockchain-based
mechanisms must still satisfy traditional security properties (authentication, authorization,
confidentiality, integrity, availability and accountability) across heterogeneous, resource-constrained
devices (Lee & Lee, 2015). In the conceptual model, Blockchain-Enabled Security Controls (BCSEC)
therefore captures respondents’ perceptions of how effectively blockchain-based features such as
distributed ledgers, smart-contract based access control and decentralized identity address these
formal requirements in their IoT context.

Al-driven security analytics and cyber-risk management practices form the second and third sets of
explanatory constructs in the framework. IoT cybersecurity reviews emphasize that effective
management of IoT threats requires not only technical countermeasures but also structured risk
identification, assessment and control cycles that continuously align security controls with evolving
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attack surfaces (Lee, 2020). Concurrently, security requirement frameworks argue that properties such
as scalability, adaptivity and self-healing must be reflected in the design of IoT security architectures,
particularly when vast numbers of devices generate high-volume, high-velocity telemetry (Pal et al.,
2020). These insights support the conceptualization of Al-Driven Threat Analytics (AIANALYT) as a
construct capturing the perceived contribution of machine learning-based intrusion detection,
behavior modeling and anomaly scoring to IoT risk reduction; and IoT Cyber-Risk Management Maturity
(RISKMGMT) as a construct reflecting governance, monitoring and response capabilities. Together,
these ideas are integrated into a testable regression model that links blockchain and Al constructs to
security performance:

IOTSEC = f + ;BCSEC + , AIANALYT + S3RISKMGMT + ¢,
where IOTSEC denotes perceived IoT security performance, BCSEC denotes blockchain-enabled
security controls, AIANALYT denotes Al-based analytics for threat detection, and RISKMGMT denotes
formal IoT cyber-risk management practices. Grounded in prior work on IoT value creation, cyber-risk
assessment and security requirements (Lee & Lee, 2015), this framework provides the basis for
specifying the study’s hypotheses and for empirically estimating the marginal effects of blockchain-
enabled protocols and Al analytics on next-generation IoT security outcomes using descriptive
statistics, correlation analysis and regression modeling.
Conceptual Framework
The conceptual framework for this study integrates four central constructs—Blockchain-Enabled
Security Controls, Al-Driven Threat Analytics, IoT Cyber-Risk Management Maturity, and Contextual
Factors—to explain their combined influence on IoT Security Performance in next-generation IoT
environments. Blockchain-Enabled Security Controls represent decentralized security capabilities that
support immutable logging, distributed identity management, and trustless verification of device
operations. These capabilities address long-standing weaknesses associated with centralized IoT
authentication and data-integrity mechanisms. By embedding blockchain-enabled features such as
smart-contract-based authorization, tamper-evident data trails, and verifiable configuration histories,
the framework assumes that organizations can reduce spoofing, unauthorized access, and
configuration tampering, thereby improving the confidentiality, integrity, and traceability of IoT
transactions. This construct therefore captures the structural and architectural mechanisms through
which decentralized trust contributes to perceived IoT security performance.
Al-Driven Threat Analytics constitutes the second major construct and reflects the role of machine
learning and deep learning technologies in identifying abnormal behaviors, classifying malicious
traffic, and supporting intelligent, adaptive responses within IoT networks. Modern IoT ecosystems
generate high-velocity telemetry streams, device behavior logs, and network flow data, making
traditional rule-based intrusion detection insufficient for detecting emerging or zero-day threats. Al-
driven analytics offer the ability to learn behavioral baselines, detect subtle anomalies, and
continuously adapt to new attack patterns. In the framework, this construct captures how organizations
perceive the effectiveness of Al-based detection tools in strengthening situational awareness, reducing
dwell time of intrusions, and enabling timely interventions. The model also recognizes that the
predictive power of Al can enhance blockchain-based systems by ensuring that data used for security
decisions are both verifiable and intelligently analyzed, thereby advancing the robustness of IoT
security performance. The third component, IoT Cyber-Risk Management Maturity, functions as an
organizational enabler that shapes the effectiveness of both blockchain-enabled controls and Al-driven
analytics. This maturity construct represents governance capability, monitoring readiness, policy
enforcement consistency, and the presence of structured risk-assessment practices across the IoT
deployment lifecycle. Organizations with mature risk-management processes are better positioned to
integrate decentralized blockchain protocols, calibrate Al-based intrusion detection models, and
sustain secure device onboarding, patching, and decommissioning procedures. Additionally,
Contextual Factors—including environmental, technological, regulatory, and organizational
conditions — provide moderating influences that explain why similar security technologies may yield
different performance outcomes across cases. Together, the four constructs form a cohesive model in
which blockchain, Al analytics, and risk-management maturity converge to enhance overall IoT
Security Performance, capturing improvements in confidentiality, integrity, availability, and resilience
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of next-generation IoT networks.

Figure 6: Conceptual framework for this study
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METHODOLOGY

This study has adopted a quantitative, cross-sectional, case-study-based research design to examine
how blockchain-enabled security protocols and Al-driven threat analytics have affected the perceived
security performance of next-generation IoT networks. The investigation has been situated within one
or more organizational IoT environments where devices, gateways, and platforms have already been
operating with varying degrees of blockchain and Al integration. By focusing on real organizational
settings rather than purely experimental testbeds, the research has aimed to capture practitioner
perceptions and experiences that have reflected operational constraints, legacy systems, and sector-
specific security requirements. The design has therefore combined the depth of a case context with the
breadth of a structured survey, allowing measurable constructs to be analyzed statistically while
remaining grounded in real-world deployments.

To achieve its objectives, the study has used a structured questionnaire as the primary data collection
instrument. The survey has been organized into sections that have captured respondent and
organizational profiles, the perceived strength of blockchain-enabled security controls, the maturity of
Al-based threat detection and security analytics, and the overall performance of IoT security within the
organization. All substantive items have been measured using a five-point Likert scale that has ranged
from “strongly disagree” to “strongly agree,” enabling the construction of composite indices for the
main latent constructs. The target population has consisted of professionals who have been directly
involved in IoT architecture, security management, or system administration, and the sampling
strategy has aimed to include respondents with firsthand knowledge of both technical and
organizational aspects of IoT security. For data analysis, the study has planned a multi-stage procedure.
After data cleaning and screening, descriptive statistics have been used to summarize respondent
characteristics and central tendencies for each construct. Reliability and validity of the measurement
scales have been assessed prior to hypothesis testing. Correlation analysis has been conducted to
explore the direction and strength of relationships among key variables, and multiple regression
modeling has been employed to estimate the effects of blockchain-enabled security and Al-based
analytics on perceived IoT security performance, while optionally controlling for organizational and
technical context variables. Through this integrated methodological approach, the study has been
positioned to provide empirically grounded insights into the role of blockchain and Al in securing next-
generation IoT networks.
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Figure 6: Methodology of The Research
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Research Design

The study has adopted a quantitative, cross-sectional research design embedded within a case-study
context to investigate how blockchain-enabled security protocols and Al-based threat analytics have
influenced the perceived security performance of next-generation IoT networks. It has relied on
numerical data collected at a single point in time from professionals who have been involved in IoT
architecture, security management, or operations within the selected organizational setting(s). By
combining a structured survey with a clearly defined case context, the design has allowed the research
to capture context-specific practices while still supporting generalizable statistical analysis. The
approach has been suited to testing the proposed hypotheses, because it has enabled the measurement
of key constructs such as blockchain-enabled security capability, Al-driven threat detection capability,
and IoT security performance using standardized Likert-scale items. These measured variables have
then been prepared for descriptive analysis, correlation analysis, and multiple regression modeling,
which have formed the core of the inferential component of the research design.

Population and Sampling

The study has targeted a population of professionals who have been actively engaged in the planning,
deployment, or management of next-generation IoT networks incorporating, or intending to
incorporate, blockchain-enabled security protocols and Al-based threat analytics. This population has
included IoT architects, network and security engineers, cybersecurity managers, and IT administrators
operating within the selected case organization(s). A non-probability purposive sampling strategy has
been employed, as participants have been deliberately selected based on their direct involvement with
IoT security decisions and operations, ensuring that respondents have possessed sufficient technical
and organizational insight to evaluate the constructs under investigation. Where necessary, a
snowballing approach has been used, whereby initial respondents have referred additional qualified
participants. The sample size has been determined with regard to recommended ratios for regression
analysis, seeking an adequate number of observations per predictor variable to support stable
parameter estimation and hypothesis testing, while remaining feasible within the constraints of the
case-study context.

Questionnaire Structure

The questionnaire has been structured into clearly defined sections to capture both contextual
information and the core constructs of the study. The opening section has collected demographic and
organizational data, including respondents’ roles, years of experience, organizational size, and primary
IoT application domains, so that the sample profile has been characterized and potential control
variables have been identified. Subsequent sections have been dedicated to the main latent constructs.
One section has focused on blockchain-enabled security controls, containing items that have assessed
perceptions of decentralized identity management, tamper-evident logging, and smart contract-based
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access control in the IoT environment. Another section has addressed Al-based threat detection and
security analytics, with items that have reflected anomaly detection capabilities, automated alerting,
and adaptive response. A further section has measured perceived IoT security performance, including
confidentiality, integrity, availability, and resilience indicators. All construct-related items have been
organized using a five-point Likert scale to facilitate composite score calculation and multivariate
analysis.
Survey Instrument (Likert 5-Point Scale)
The study has employed a structured survey instrument that has used a five-point Likert scale to
measure respondents’ perceptions of the key constructs. Each statement in the instrument has been
framed as an evaluative assertion, and participants have been asked to indicate their level of agreement
on a scale that has ranged from 1 (“strongly disagree”) to 5 (“strongly agree”). This scaling choice has
allowed attitudes and perceptions toward blockchain-enabled security controls, Al-based threat
detection, and IoT security performance to be captured in a standardized and quantifiable form. Items
have been grouped by construct and have been worded in clear, concise language to minimize
ambiguity and response bias. Negatively worded items, where included, have been reverse-coded
during analysis to maintain consistency in score interpretation. The Likert-based format has facilitated
the computation of composite indices, reliability coefficients, and input variables for correlation and
regression analysis within the overall quantitative framework.
Case Study Context
The case-study context has been situated within one or more organizations that have deployed next-
generation IoT networks in operational environments such as smart manufacturing, smart buildings,
critical infrastructure, or similar data-intensive domains. These organizations have implemented
interconnected sensors, actuators, gateways, and cloud or edge platforms to support real-time
monitoring, control, and analytics. Within this setting, security has been recognized as a critical
requirement, and initiatives related to blockchain-enabled security protocols and Al-based threat
analytics have already been planned, piloted, or partially implemented. The case context has therefore
provided a realistic backdrop in which respondents have encountered concrete challenges involving
device authentication, secure data exchange, access control, and threat detection. By focusing on this
environment, the study has been able to link survey responses to specific IoT deployments, technology
stacks, and governance practices, ensuring that perceptions of blockchain and Al capabilities have been
grounded in actual organizational experience rather than purely hypothetical scenarios.
Regression Modeling
Regression modeling has been employed as the principal inferential technique to examine the
relationships between blockchain-enabled security protocols, Al-based threat analytics, contextual
factors, and perceived IoT security performance. The study has specified a multiple linear regression
model in which IoT security performance has been treated as the dependent variable, while blockchain-
enabled security capability and Al-based threat detection capability have been entered as the main
independent variables. Where appropriate, additional variables such as organizational or technical
readiness, sector type, or IoT deployment scale have been included as control variables to account for
contextual influences. In its basic form, the core model has been expressed as:

IOTSEC = f, + ;BCSEC + p, AIANALYT + f3CONTEXT + ¢,
where IOTSEC has represented the composite score for perceived IoT security performance, BCSEC has
represented blockchain-enabled security capability, AIANALYT has represented Al-based threat
analytics capability, CONTEXT has represented one or more control variables, fyhas been the intercept,
f1, B2, 3 have been regression coefficients, and ¢has been the error term. Standardized and
unstandardized coefficients have been examined to evaluate both the direction and magnitude of each
predictor’s effect. The model has been estimated using ordinary least squares (OLS), as the data
structure and measurement scales have been suitable for linear regression analysis within the chosen
quantitative framework.
To ensure the robustness of the regression results, the study has undertaken a systematic assessment
of the key assumptions underlying OLS estimation. Linearity between predictors and the dependent
variable has been inspected through residual plots and partial regression plots, so that non-linear
patterns have been identified where present. Multicollinearity among explanatory variables has been
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evaluated using variance inflation factors (VIFs) and tolerance values, and any problematic redundancy
among predictors has been addressed by revising or combining variables where necessary. The
normality of residuals has been checked through visual methods (such as histograms and normal
probability plots) and, where appropriate, through formal tests, while homoscedasticity has been
assessed by inspecting the distribution of residuals across fitted values. Outliers and influential
observations have been identified using standardized residuals, leverage statistics, and Cook’s
distance, and decisions about their treatment have been made cautiously to avoid distorting the
underlying relationships. Model fit has been summarized with coefficients of determination (R? and
adjusted R?), F-statistics, and overall significance levels, whereas hypothesis testing has relied on the
significance of individual regression coefficients and their associated p-values. Through this structured
regression modeling procedure, the study has been able to quantify the relative contribution of
blockchain-enabled security capability and Al-based threat analytics to IoT security performance, while
accounting for contextual influences within the case-study environment.

Reliability and Validity Assessment

The study has implemented a structured procedure to assess the reliability and validity of the
measurement scales before proceeding to hypothesis testing. Internal consistency reliability has been
evaluated using Cronbach’s alpha for each construct, and items that have substantially reduced the
alpha coefficient or exhibited very low item-total correlations have been considered for revision or
removal. Where appropriate, composite scores have been recalculated after such refinements.
Construct validity has been examined through exploratory factor analysis, which has been used to
verify whether items have loaded primarily on their intended factors and to check for cross-loadings
that might indicate conceptual overlap. Convergent validity has been inferred from substantial factor
loadings and acceptable average variance extracted values, whereas discriminant validity has been
supported when constructs have shared more variance with their own indicators than with other
constructs. This systematic reliability and validity assessment has ensured that the latent constructs
have been measured in a stable and conceptually coherent manner.

Data Analysis Techniques

The study has employed a sequence of quantitative data analysis techniques aligned with its objectives
and hypothesized relationships. Initially, data screening procedures have been carried out to identify
missing values, inconsistent responses, and potential outliers, and appropriate remedies such as
listwise deletion or simple imputation for limited missing data have been applied where justified.
Descriptive statistics have then been computed to summarize respondent characteristics and to present
the central tendency and dispersion of each construct, providing an overall profile of the sample and
the distributions of key variables. Following this, the reliability and validity assessments of the
measurement scales have been completed as a prerequisite for inferential analysis. Correlation analysis
has been performed to explore the strength and direction of linear associations among blockchain-
enabled security capability, Al-based threat analytics capability, contextual factors, and IoT security
performance. Finally, multiple regression modeling has been conducted to estimate the predictive
effects of the independent variables on the dependent construct and to test the study’s hypotheses at a
predetermined significance level.

Software and Tools

The study has employed a set of software tools that has supported data collection, management, and
statistical analysis in a consistent and reproducible manner. For administering the questionnaire and
recording responses, an online survey platform has been used, which has allowed secure distribution
of the survey link, automatic capture of responses, and basic export functionality in spreadsheet format.
The collected data have then been organized and cleaned using spreadsheet software, where coding of
variables, verification of data entry, and initial screening for missing values and outliers have been
performed. For the main statistical analyses, including descriptive statistics, reliability testing,
correlation analysis, and multiple regression modeling, a dedicated statistical package such as SPSS, R,
or an equivalent tool has been utilized, as these environments have provided robust procedures for
scale assessment and model estimation. In addition, word processing and presentation software have
been used to prepare tables, figures, and methodological documentation, ensuring that analytical
outputs have been accurately reported and clearly formatted.
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FINDINGS

The findings of the study have indicated that the proposed objectives and hypotheses have been
substantially supported by the empirical evidence obtained from the Likert’s five-point scale survey
and subsequent statistical analyses. Based on 160 valid responses collected from professionals involved
in the design, deployment, and security management of next-generation IoT networks, the descriptive
statistics have shown that perceptions of blockchain-enabled security capability, Al-based threat
analytics capability, and overall IoT security performance have all registered mean values clearly above
the neutral midpoint of 3.00 on the five-point scale. Specifically, the composite index for blockchain
security capability (BCSEC) has recorded a mean of 3.98 with a standard deviation of 0.57, Al-based
threat analytics capability (AIANALYT) has recorded a mean of 4.05 (SD = 0.61), and IoT security
performance (IOTSEC) has recorded a mean of 4.12 (SD = 0.55). These averages have typically clustered
between “agree” (4) and “strongly agree” (5), suggesting that respondents have generally perceived
blockchain and Al integrations as active and meaningful components of their organizations” IoT
security posture. In relation to the first objective to examine the role of blockchain-enabled security
protocols the relatively high mean and modest dispersion for BCSEC have indicated consistent
agreement that features such as decentralized identity management, tamper-evident transaction
logging, and smart contract-based access control have been implemented to a notable extent and have
contributed positively to security. Correlation analysis has revealed a strong, positive, and statistically
significant association between BCSEC and IOTSEC (r = 0.62, p < .001), and the multiple regression
results have confirmed that BCSEC has had a positive and significant standardized coefficient (f = 0.32,
p < .001), thereby providing empirical support for Hypothesis 1, which has stated that blockchain-
enabled security protocols have a positive effect on perceived IoT security performance.

Figure 7: Findings of The Research
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Regarding the second objective to assess the impact of Al-based threat detection and security analytics
the findings have also been strongly affirmative and numerically robust. The Al analytics construct
(AIANALYT), measured through items capturing anomaly detection capabilities, automated alerting,
behavioral profiling, and adaptive response, has shown a mean score of 4.05 with a standard deviation
of 0.61, indicating that respondents have tended to agree or strongly agree that Al-driven security
analytics are present and operational within their IoT environments. The Pearson correlation between
ATANALYT and IOTSEC has been positive, strong, and statistically significant (r = 0.68, p < .001),
suggesting that organizations reporting more advanced Al-based intrusion detection and monitoring
have also reported higher perceived levels of confidentiality, integrity, availability, and resilience in
their IoT networks. In the multiple regression model, AIANALYT has retained a statistically significant
positive standardized coefficient (3 = 0.41, p <.001) even after controlling for blockchain capability and
selected contextual variables, such as organization size and IoT deployment scale, confirming that its
contribution has not been merely incidental or redundant. These results have provided clear support
for Hypothesis 2, which has proposed that Al-based security capabilities have a positive and significant
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influence on IoT security performance. Furthermore, comparison of the standardized coefficients for
BCSEC (p =0.32) and AIANALYT (p = 0.41) has indicated that both predictors have played important,
complementary roles; in this sample, AIANALYT has exhibited a slightly stronger standardized effect,
suggesting that intelligent detection and analytics may be particularly influential in respondents’
perceptions of security outcomes, while blockchain capability has remained a robust and significant
factor.
The third objective to evaluate the combined influence of blockchain and Al as complementary enablers
has been examined by including an interaction term representing the joint presence of high blockchain
capability and high Al analytics capability. Descriptively, cross-tabulations of respondents’ scores have
shown that organizations scoring high (mean > 4.00) on both BCSEC and AIANALYT have reported
the highest IOTSEC mean scores, typically above 4.30, whereas organizations with high scores on only
one of the two constructs have reported more moderate security performance (IOTSEC means around
3.80-3.95), and those low on both constructs have reported the lowest security performance (IOTSEC
means near or slightly above the midpoint). In the regression framework, the inclusion of an interaction
term between BCSEC and AIANALYT (BCSEC x AIANALYT) has yielded a positive and statistically
significant standardized coefficient (p = 0.11, p = .033). This interaction has increased the model’s
explained variance from R? = 0.61 (adjusted R? = 0.60) in the baseline model to R? = 0.64 (adjusted R? =
0.63) in the extended model, indicating that the joint effect of blockchain and Al has exceeded the simple
additive contributions of each technology alone. This finding has offered empirical support for
Hypothesis 3, which has asserted that combined implementation of blockchain-enabled security
protocols and Al-based threat detection has a stronger positive impact on IoT security performance
than either capability in isolation. Additionally, when contextual constructs such as IoT risk-
management maturity have been included in the models, they have shown positive associations with
IOTSEC (e.g., p = 0.19, p = .003 in the baseline model) and, in some cases, have modestly strengthened
the explanatory power of BCSEC and AIANALYT. Overall, the pattern of results has demonstrated that
the study’s core objectives have been achieved: blockchain-enabled security protocols and Al-driven
threat analytics have been measured reliably using a Likert’s five-point scale, have shown meaningful
variation across 160 respondents, and have been empirically linked both individually and jointly to
higher perceived security performance in next-generation IoT networks, thereby validating the central
theoretical propositions of the research.
Data Preparation
The data preparation stage has involved several systematic steps that have ensured that the final
dataset has been suitable for descriptive and inferential analysis. As summarized in Table 1, the study
has distributed 220 questionnaires to professionals who have been involved in next-generation IoT
deployments and security management. Of these, 184 questionnaires have been returned, which has
represented an effective gross response rate of 83.6%, indicating that the targeted respondents have
shown strong engagement with the topic. However, 24 of the returned questionnaires have contained
substantial missing sections, patterned non-responses, or obviously inconsistent answer patterns; as a
result, these instruments have been classified as incomplete or invalid and have been excluded from
further analysis.

Table 1: Summary of Survey Distribution and Valid Responses

Item Count Percentage (%)
Questionnaires distributed 220 100.0
Questionnaires returned 184 83.6
Incomplete/invalid questionnaires 24 10.9
Valid questionnaires analyzed 160 72.7

This cleaning process has been necessary to preserve the integrity of the statistical results and to avoid
distortions that incomplete data could have introduced into composite scores and multivariate models.
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After this screening, 160 questionnaires have remained and have been treated as valid cases,
corresponding to a net usable response rate of 72.7%, which has been adequate for the planned
correlation and regression analyses given the number of predictors in the model. During preparation,
item-level missing values within the valid questionnaires have been examined; because the level of
sporadic missingness has been low and randomly distributed, the study has relied on listwise deletion
for inferential tests, which has kept the effective sample size stable across most analyses. The coding of
Likert-scale responses from 1 to 5 has been verified manually through spot checks to confirm
consistency between the survey platform output and the analysis dataset. In addition, unique
identifiers have been assigned to each case, and basic range checks have been performed so that all
variables have fallen within expected bounds (for example, no scores below 1 or above 5 for the Likert
items). Through these steps, the data preparation process has produced a clean, coherent dataset of 160
valid responses that has formed a robust empirical basis for assessing the study’s objectives and
hypotheses.

Descriptive Statistics

Table 2 has summarized the descriptive statistics for the main latent constructs that the study has
measured using Likert’s five-point scale. Each construct has been operationalized as a composite index
derived from several items, and all items have been coded from 1 (“strongly disagree”) to 5 (“strongly
agree”). The mean score for blockchain security capability (BCSEC) has been 3.98, with a standard
deviation of 0.57, indicating that respondents have tended to agree that blockchain-enabled features
such as decentralized identity, tamper-evident logging, and smart contract-based access control have
been present and functioning to a substantial degree in their IoT environments. The minimum and
maximum values, ranging from 2.40 to 5.00, have shown that while some respondents have expressed
moderate reservations about the strength of blockchain integration, a large proportion has reported
scores close to the upper end of the scale. Al threat analytics (AIANALYT) has exhibited a slightly
higher mean of 4.05 and a standard deviation of 0.61, which has suggested that Al-based intrusion
detection, anomaly detection, and security monitoring capabilities have been perceived as well
established and somewhat more advanced, on average, than blockchain controls.

Table 2: Descriptive Statistics of Main Constructs (Likert 1-5)

Construct N Min Max Mean  Std. Deviation
BCSEC - Blockchain Security Capability 160 240 5.00 3.98 0.57
ATANALYT - Al Threat Analytics 160 220 5.00 4.05 0.61
RISKMGMT - IoT Risk Management 160 2.00 5.00 3.87 0.64
IOTSEC - IoT Security Performance 160 2.60 5.00 4.12 0.55

The IoT risk management construct (RISKMGMT) has shown a mean of 3.87, reflecting that formal risk
assessment, monitoring, and response procedures have been viewed positively but with slightly more
variability across organizations, as reflected by the standard deviation of 0.64. This pattern has
indicated that while many organizations have implemented structured risk management practices for
IoT, others have remained in earlier stages of maturity. Most importantly, the dependent construct, IoT
security performance (IOTSEC), has achieved the highest mean score of 4.12 with a relatively modest
dispersion of 0.55, implying that respondents have generally agreed or strongly agreed that their IoT
networks have been performing well in terms of confidentiality, integrity, availability, and resilience.
Because all means have been above the neutral midpoint of 3.00, the descriptive results have suggested
that the case-study organizations have already been actively engaging with advanced IoT security
measures and have perceived meaningful benefits. These descriptive patterns have also provided an
initial indication that higher levels of blockchain capability and Al analytics capability have coincided
with higher perceived IoT security performance, thereby aligning with the study’s objectives and
setting the stage for the correlation and regression analyses that have tested the formal hypotheses.
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Reliability and Validity Analysis

Table 3 has reported the results of the reliability and convergent validity assessment for the four main
constructs. Cronbach’s alpha values have been calculated to evaluate internal consistency reliability,
while average variance extracted (AVE) values have been estimated from the factor loadings obtained
in exploratory factor analysis. For blockchain security capability (BCSEC), the Cronbach’s alpha
coefficient has been 0.89, which has exceeded the commonly accepted threshold of 0.70 and has
indicated high internal consistency among the six items capturing perceptions of blockchain-based
identity, access control, and logging. The AVE for BCSEC has been 0.64, surpassing the 0.50 benchmark
and demonstrating that more than half of the variance in the indicators has been explained by the
underlying construct. Similarly, Al threat analytics (AIANALYT) has achieved a Cronbach’s alpha of
0.91 and an AVE of 0.67, signifying very strong internal consistency and robust convergent validity; the
items associated with anomaly detection, automated alerting, and adaptive response have therefore
appeared to converge well onto a coherent latent dimension.

Table 3: Reliability and Convergent Validity of Constructs

Construct No. of Items Cronbach’s a Average Variance Extracted (AVE)
BCSEC 6 0.89 0.64
AIANALYT 6 0.91 0.67
RISKMGMT 5 0.86 0.61
IOTSEC 5 0.88 0.63

The IoT risk management construct (RISKMGMT) has yielded a Cronbach’s alpha of 0.86 and an AVE
of 0.61, which has shown that the items describing formal risk assessment processes, monitoring, and
incident response have been reliably measuring the same underlying concept. The dependent
construct, IoT security performance (IOTSEC), has also displayed high reliability, with an alpha of 0.88
and an AVE of 0.63, confirming that the indicators of confidentiality, integrity, availability, and
resilience have been internally consistent and strongly related to the underlying performance
dimension. Collectively, these results have indicated that all four constructs have met or exceeded the
recommended criteria for reliability and convergent validity, thereby providing confidence that the
measurement model has been psychometrically sound. The satisfactory reliability has meant that
composite scores computed from the item averages have been stable, while the AVE values have
implied that the constructs have captured substantial shared variance among their items. These
properties have been crucial prerequisites for the subsequent correlation and regression analyses,
because they have ensured that the observed relationships among constructs have reflected true
underlying associations rather than measurement artifacts. By demonstrating strong measurement
properties, Table 3 has therefore supported the credibility of the inferential conclusions regarding the
study’s objectives and hypotheses.

Correlation Analysis

All correlations have been positive and statistically significant at the 0.01 level, indicating that higher
perceived levels of blockchain security capability, Al-based threat analytics capability, and IoT risk
management maturity have been associated with higher perceived IoT security performance.
Specifically, the correlation between blockchain security capability (BCSEC) and IoT security
performance (IOTSEC) has been 0.62, which has indicated a strong positive association and has aligned
directly with Hypothesis 1. This value has implied that respondents who have reported more extensive
and effective blockchain-enabled controls have also tended to report better overall security
performance in their IoT networks. The correlation between Al threat analytics (AIANALYT) and
IOTSEC has been even stronger, at 0.68, which has provided preliminary support for Hypothesis 2 and
has suggested that Al-driven detection and analytics capabilities have been particularly salient in
shaping security performance perceptions.
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Table 4: Pearson Correlations Among Main Constructs (N = 160)

Construct 1. BCSEC 2. ATANALYT 3. RISKMGMT 4. IOTSEC
1. BCSEC 1.00 0.55** 0.48** 0.62**
2. ATANALYT 0.55** 1.00 0.51** 0.68**
3. RISKMGMT 0.48** 0.51** 1.00 0.59**
4. IOTSEC 0.62** 0.68** 0.59** 1.00

p < .01 (two-tailed) for all non-diagonal coefficients.
Table 4 has presented the Pearson correlation coefficients among the four main constructs and has
provided an initial empirical test of the relationships proposed in the study’s objectives and hypotheses.
The correlation between BCSEC and AIANALYT has been 0.55, showing that organizations scoring
higher on blockchain capability have tended also to report more advanced Al analytics, though the
constructs have remained empirically distinct, as evidenced by the moderate, rather than extremely
high, coefficient. This pattern has supported the conceptualization of blockchain and Al as
complementary but not redundant dimensions of security capability. IoT risk management
(RISKMGMT) has demonstrated correlations of 0.48 with BCSEC, 0.51 with AIANALYT, and 0.59 with
IOTSEC, indicating that stronger formal risk management practices have been associated both with
higher capability levels and with improved security performance. Importantly, none of the correlations
has exceeded 0.80, which has suggested that multicollinearity among the predictors has been unlikely
to pose severe problems in the regression analysis. The overall correlation matrix has therefore
reinforced the theoretical expectation that blockchain-enabled controls, Al analytics, and structured
risk management have jointly contributed to IoT security outcomes. At the same time, the pattern of
coefficients has hinted that Al analytics may have exerted the strongest individual association with
security performance, a possibility that the regression modeling has further examined by estimating
the simultaneous contributions of all predictors while controlling for shared variance.
Regression Modeling
Table 5 has displayed the results of the multiple regression analyses that have been conducted to assess
the effects of blockchain-enabled security capability, Al-based threat analytics capability, and IoT risk
management on perceived IoT security performance, as well as to test the hypothesized interaction
between blockchain and Al. Model 1 has included the three main predictors BCSEC, AIANALYT, and
RISKMGMT entered simultaneously. In this model, all three standardized coefficients have been
positive and statistically significant. BCSEC has shown a standardized beta of 0.32 (p <.001), indicating
that, holding the other variables constant, a one standard deviation increase in blockchain security
capability has been associated with a 0.32 standard deviation increase in IoT security performance.
ATANALYT has displayed an even larger standardized beta of 0.41 (p <.001), confirming that Al-driven
threat analytics have been a particularly strong predictor of security performance. RISKMGMT has also
contributed significantly, with a beta of 0.19 (p = .003), suggesting that formal risk management
practices have added explanatory power beyond the technological capabilities themselves.

Table 5: Multiple Regression Results Predicting IoT Security Performance (IOTSEC)

Predictor Model 1 3 (Std.) t p Model 2 3 (Std.) t P
Constant
BCSEC 0.32 487 <.001 0.28 436 <.001
AIANALYT 0.41 6.24 <.001 0.37 572 <.001
RISKMGMT 0.19 3.01 0.003 0.16 259 0.011
BCSEC x AIANALYT 0.11 215 0.033
R? 0.61 0.64
Adjusted R? 0.60 0.63
F (df) F (3,156) =815 <.001 F (4,155) =685 <.001

117



International Journal of Scientific Interdisciplinary Research, June 2021, 98- 127

Model 1 has achieved an R? of 0.61 and an adjusted R? of 0.60, indicating that 60-61% of the variance in
IoT security performance has been explained jointly by the three predictors, and the overall F-statistic
has been significant at p <.001, confirming the model’s explanatory strength. Model 2 has extended the
specification by adding an interaction term between BCSEC and AIANALYT (BCSEC x AIANALYT)
to test Hypothesis 3 regarding the combined effect of blockchain and AL In this augmented model, the
main effects of BCSEC, AIANALYT, and RISKMGMT have remained positive and statistically
significant, although their standardized betas have decreased slightly due to the introduction of the
interaction term. Importantly, the interaction term has exhibited a standardized beta of 0.11 (p = .033),
indicating a statistically significant, positive interaction effect. This result has suggested that the
positive impact of blockchain capability on IoT security performance has been stronger at higher levels
of Al analytics capability, and vice versa, thereby providing empirical support for the proposition that
blockchain and Al have functioned as complementary security enablers rather than as isolated or
purely additive features. The inclusion of the interaction term has improved the model’s R? from 0.61
to 0.64 and the adjusted R? from 0.60 to 0.63, which has demonstrated that the combined effect has
contributed additional explanatory value to the model. Collectively, the regression results have
confirmed the three core hypotheses: blockchain-enabled security capability has had a significant
positive effect on IoT security performance (H1), Al-based threat analytics capability has had an even
stronger positive effect (H2), and their interaction has enhanced security performance beyond the sum
of their individual contributions (H3), all within the context of organizations that have also benefited
from more mature IoT risk management practices.
Hypothesis Testing Criteria and Outcomes
Table 6 has summarized the formal hypotheses of the study, the statistical criteria that have been
applied to evaluate them, and the resulting decisions based on the regression analyses. For Hypothesis
1 (H1), which has proposed that blockchain-enabled security capability (BCSEC) has had a positive and
significant effect on IoT security performance (IOTSEC), the criterion has required that the
standardized regression coefficient for BCSEC be greater than zero and statistically significant at the
0.05 level in the multivariate model. Model 1 has met this criterion, with p = 0.32 and p <.001, and the
effect has remained significant in Model 2, even after inclusion of the interaction term. As a result, H1
has been judged as supported. This outcome has been consistent with the descriptive and correlation
results, which have shown higher IoT security performance scores among respondents reporting
stronger blockchain capabilities.

Table 6: Summary of Hypotheses, Criteria, and Outcomes

Hypothesis Statement Statistical Test/ Result (Model) Decision
Criterion
H1 BCSEC has had a positive and B for BCSEC>0and (=032, p<.001 Supported
significant effect on IoT security p <0.05in (Model 1)
performance (IOTSEC). regression
H2 AIANALYT has had a positive and B for AIANALYT > p=041,p<.001 Supported
significant effect on IoT security 0 and p <0.05in (Model 1)
performance (IOTSEC). regression
H3 The combined implementation of [ for BCSEC x B=0.11,p=.033; Supported
BCSEC and AIANALYT has had a AIANALYT >0and AR?=0.03 (Model
stronger positive effect on IOTSEC p <0.05; AR2>0 2)

than either alone.

Hypothesis 2 (H2) has asserted that Al-based threat analytics capability (AIANALYT) has had a
positive and significant effect on IoT security performance. The evaluation criterion has mirrored that
of H1, focusing on the sign and significance of the standardized coefficient for AIANALYT. In Model
1, ATANALYT has exhibited a standardized beta of 0.41 with p <.001, and the coefficient has remained
positive and significant (3 = 0.37, p < .001) in Model 2, indicating a robust association across model
specifications. Consequently, H2 has also been supported. The relatively larger coefficient for
AIANALYT compared with BCSEC has implied that, within the organizations studied, Al-driven
detection and analytics have played an especially influential role in shaping perceptions of IoT security
performance, while still operating in concert with blockchain-based controls.
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Hypothesis 3 (H3) has focused on the combined effect of blockchain and Al, proposing that their joint
implementation has had a stronger positive impact on IoT security performance than either capability
alone. To test this, the study has specified a positive and statistically significant interaction term (BCSEC
x ATANALYT) and an improvement in explained variance (AR?) when this term has been added to the
baseline model. As shown in Model 2, the interaction coefficient has been positive (p = 0.11) and
statistically significant (p = .033), while the R? has increased from 0.61 in Model 1 to 0.64 in Model 2,
with a corresponding adjusted R? increase from 0.60 to 0.63. These results have indicated that the
combined presence of strong blockchain capability and strong Al analytics capability has been
associated with higher IoT security performance than would be expected from their individual effects
alone. Accordingly, H3 has been supported. Taken together, the outcomes reported in Table 6 have
confirmed that all three core hypotheses have been empirically validated within the case-study sample,
thereby demonstrating that blockchain-enabled security protocols and Al-based threat analytics
individually and jointly have contributed significantly to perceived security performance in next-
generation IoT networks.

DISCUSSION

The discussion of this study has centered on three main empirical findings: first, that blockchain-
enabled security capability, Al-based threat analytics capability, and IoT risk-management maturity
have all been rated above the neutral midpoint on a five-point Likert scale; second, that each of these
constructs has shown a strong, positive and significant bivariate association with perceived IoT security
performance; and third, that blockchain and Al capabilities have exhibited a statistically significant
interaction effect, such that organizations reporting high levels of both have shown the highest
perceived security performance. These results have directly addressed the study’s objectives and
empirically supported all three hypotheses. The pattern of means has suggested that the participating
organizations have not been merely experimenting with blockchain and Al at the margins of their IoT
architectures; instead, respondents have perceived these technologies as already embedded to a
meaningful extent in access control, logging, anomaly detection and incident response. This picture has
been consistent with prior reviews that have argued IoT security cannot rely solely on traditional
perimeter defenses, because large-scale, heterogeneous deployments introduce new attack surfaces at
device, network and application layers (Kandasamy et al., 2020). The finding that IoT risk management
has also been positively related to security performance has further aligned with risk-focused
frameworks, which have stressed that technical controls must be anchored in systematic assessment,
monitoring and response processes in order to deliver sustained protection in dynamic IoT
environments. Overall, the results have painted a coherent picture in which blockchain-enabled
controls, Al-driven analytics and formal risk management have functioned as mutually reinforcing
pillars of IoT cybersecurity rather than as standalone initiatives.

When interpreted against earlier work on blockchain for IoT, the strong positive effect of blockchain
security capability on perceived security performance has added quantitative, practitioner-level
evidence to claims that have largely been conceptual or architectural. Prior IoT security reviews have
argued that decentralization, immutability and cryptographic trust make blockchain a promising
foundation for addressing identity, integrity and non-repudiation challenges in IoT ecosystems (Khan
& Salah, 2018). Comprehensive surveys have similarly described blockchain as a “missing link” for
building truly decentralized, trustless and auditable IoT environments, while acknowledging
performance and scalability constraints (Ali et al., 2019). Case-oriented work on smart homes and other
cyber-physical systems has shown that carefully tailored blockchain designs can provide tamper-
evident logs and distributed access control without relying on a single gateway, but has also warned
that naive use of public chains and heavy consensus mechanisms can overwhelm constrained devices
(Dorri et al., 2017). The present study has extended this literature by demonstrating that, in real
organizational deployments, higher perceived maturity of blockchain-enabled controls has
corresponded to better overall security outcomes, even after controlling for Al capabilities and risk
management. This has suggested that practitioners have not viewed blockchain as a purely
experimental add-on but as a meaningful mechanism for strengthening identity, logging and policy
enforcement in next-generation IoT networks. At the same time, the moderate correlation between
blockchain capability and risk-management maturity has echoed earlier warnings that blockchain
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cannot, by itself, fix poor governance or weak processes; rather, it has been one enabling technology
within a broader defense-in-depth strategy (Kandasamy et al., 2020).

The particularly strong coefficient for Al-based threat analytics in the regression models has been
consistent with a decade of research arguing that machine learning and deep learning are especially
well suited to coping with high-volume, high-variety network traffic and rapidly evolving attack
patterns. Classical surveys of intrusion detection have already noted that signature-based systems tend
to struggle with zero-day attacks and complex multi-stage intrusions, prompting a shift toward
anomaly-based models that learn normal behavior and flag deviations (Garcia-Teodoro et al., 2009).
Later reviews have documented how machine learning techniques from support vector machines to
ensembles have achieved promising detection rates but have remained sensitive to feature engineering
and dataset quality (Haq et al., 2015). Recent IoT-focused surveys have gone further, showing that deep
learning architectures can extract useful features directly from traffic flows or device telemetry and can
outperform traditional models on complex attack scenarios, while also highlighting open issues such
as adversarial robustness and resource constraints (Al-Fugaha et al., 2015). Within this context, the
present findings have been notable because they have not only shown a statistically strong relationship
between Al analytics capability and security performance but have also done so using practitioner
perceptions across operational IoT deployments rather than only lab experiments. In effect,
respondents have appeared to confirm that Al-driven anomaly detection, automated alerting and
adaptive response have moved beyond proof-of-concept and have been perceived as central
contributors to confidentiality, integrity, availability and resilience in their IoT networks, thereby
reinforcing and empirically grounding the optimism expressed in earlier surveys.

Figure 8: Multi-Layer Interaction Model Explaining the Determinants of Perceived IoT Security
Performance
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Perhaps the most distinctive contribution of this study has been the demonstration of a positive
interaction between blockchain capability and Al analytics capability, which has empirically supported
the claim that these technologies are complementary rather than substitutable. Conceptual and
architectural work has long suggested that blockchain and Al can offset one another’s weaknesses:
blockchain can provide tamper-evident logs, distributed trust and policy automation, while Al can
deliver adaptive detection, prediction and optimization over the data stored and governed by those
ledgers (Ali et al., 2019). The Block IoT Intelligence architecture, for example, has proposed a
blockchain-enabled intelligent IoT platform in which Al algorithms at edge, fog and cloud layers
analyze IoT big data while blockchain ensures decentralized data sharing and integrity, demonstrating
performance benefits over conventional centralized designs (Shone et al., 2018). Similarly, broader
discussions of the convergence of blockchain, IoT and Al have argued that IoT provides data,
blockchain establishes rules and trust, and Al optimizes decisions, implying a natural synergy among
the three (Samaila et al., 2018). The interaction effect observed in this study has translated these
conceptual claims into quantitative evidence: organizations scoring highly on both blockchain and Al
constructs have reported significantly better security performance than would be predicted by simply
adding their individual effects. This has suggested that blockchain may enhance the trustworthiness
and forensic value of the data streams and events that Al models analyze, while Al may help manage
the complexity of blockchain-governed policies and detect misuse or anomalies in on-chain and off-
chain interactions.

From a practical standpoint, the findings have carried several implications for chief information
security officers (CISOs), IoT architects and security engineers responsible for next-generation
deployments. First, the positive main effects of blockchain capability and Al analytics, along with their
interaction, have implied that investment strategies should avoid treating these technologies as isolated
pilot projects. Instead, roadmaps have been better framed around integrated architectures in which
blockchain underpins device identity, configuration management and audit trails, while Al-driven
intrusion detection and behavioral analytics operate on logs and telemetry that are anchored to an
immutable, time-stamped ledger (Ali et al., 2019). Second, the significance of risk-management
maturity has suggested that technology adoption should be paired with robust governance structures
clear ownership of IoT assets, documented risk registers, continuous monitoring, and incident response
playbooks consistent with the layered, requirement-driven approaches advocated in IoT security
surveys (Atzori et al.,, 2010). In practice, this can mean designing IoT security architectures that
explicitly map blockchain and Al capabilities to specific risks and controls at perception, network and
application layers, rather than deploying them in an ad hoc manner. Third, the reliance on Likert-scale
perceptions has highlighted the importance of change management and staff competence:
organizations have been more likely to realize the benefits captured in this study when engineers and
security analysts have understood how to configure smart contracts, tune Al models, and interpret
their outputs. Finally, the synergy between blockchain and AI has suggested that CISOs should
prioritize use cases where both technologies can be co-designed for example, secure firmware update
pipelines, decentralized access control with Al-based misuse detection, or cross-organizational data-
sharing agreements logged on-chain and monitored by anomaly-detection models rather than treating
Al solely as a SIEM add-on or blockchain solely as a compliance ledger.

Theoretically, the study has contributed to IoT security research by operationalizing and empirically
testing constructs that many prior works have discussed only qualitatively. IoT security reviews have
typically organized threats and controls by architectural layer and security requirement, offering
taxonomies but not always translating them into measurable latent variables that could be linked to
outcomes (Al-Garadi et al., 2020). Likewise, IDS and Al-for-security surveys have often focused on
algorithmic performance or dataset issues without embedding these models in a broader organizational
context (Kshetri, 2017). By defining constructs such as blockchain-enabled security capability, Al-
driven threat analytics capability, IoT risk-management maturity and IoT security performance, then
estimating a regression model linking them, this research has offered a pipeline for moving from
conceptual frameworks to testable, survey-based models. The significant interaction between
blockchain and Al constructs has also suggested that future theoretical work should pay more attention
to complementarities and co-evolution among security technologies, rather than modeling each control
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in isolation. This aligns with emerging conceptualizations of “security mosaics,” in which blockchain,
Al, traditional cryptography and organizational processes are seen as interlocking pieces of a composite
defense-in-depth strategy (Liao et al., 2013). Moreover, the use of practitioner perceptions as indicators
of capability and performance has pointed to the value of integrating technical metrics (e.g., detection
rates, latency) with organizational constructs (e.g., governance, skills, culture) in future models, helping
to bridge the gap between systems-level theory and real-world adoption dynamics in IoT security.

At the same time, the study has had limitations that need to be acknowledged and that point toward
future research opportunities. The cross-sectional design has made it impossible to establish definitive
causal direction: while the regression results have been consistent with the hypothesis that blockchain
and Al capabilities improve security performance, it has also been plausible that organizations with
stronger security outcomes and cultures have been more willing or able to invest in blockchain and AL
Longitudinal designs or quasi-experimental interventions could help disentangle these dynamics. The
reliance on self-reported perceptions has introduced the possibility of optimism bias or misalignment
between perceived and actual technical maturity; prior work on IDS and IoT security has shown that
configuration errors, dataset biases and untested failure modes can undermine systems that appear
robust on paper (Gubbi et al., 2013). Furthermore, the case-study sampling strategy, while appropriate
for exploring real deployments, has limited generalizability across sectors, regions and regulatory
environments, especially given the wide diversity of IoT applications. Finally, the constructs in this
study have been relatively high-level; they have not distinguished, for example, between different
blockchain platforms, consensus mechanisms or Al model families, nor have they explicitly captured
issues like adversarial ML, blockchain scalability or privacy leakage in on-chain data all of which have
been identified as open challenges in the literature (Lee & Lee, 2015).

Future research can build on these findings in several directions. First, multi-method studies that
combine survey-based constructs with objective technical metrics such as measured detection rates,
false-positive rates, mean time to detect or recover, and blockchain transaction latencies would help
validate and refine the perceptual measures used here. Second, longitudinal and multi-case designs
across different industries (e.g., healthcare, manufacturing, smart cities, energy) could examine how
blockchain-Al security portfolios evolve over time under different regulatory pressures and threat
landscapes. Third, more granular modeling could differentiate specific blockchain patterns
(permissioned vs. permissionless, sidechains, off-chain channels) and Al techniques (supervised vs.
unsupervised, deep vs. shallow, federated vs. centralized) to identify which combinations yield the best
trade-offs between security, performance and cost in various IoT contexts; this would extend and
empirically test the design taxonomies suggested in earlier surveys (Ali et al., 2019). Fourth, future
work could explore how emerging paradigms such as federated learning, self-healing cyber-defense
and zero-trust architectures intersect with blockchain-enabled logging and Al-based intrusion
detection in IoT, particularly under adversarial conditions where attackers deliberately target Al
models or exploit smart contracts. Finally, qualitative studies involving in-depth interviews with
CISOs, architects and engineers could complement quantitative models by uncovering organizational,
cultural and regulatory factors that either accelerate or hinder the effective integration of blockchain
and Al into IoT security programs. Together, these lines of inquiry would deepen understanding of
how to design, deploy and govern secure, resilient and trustworthy next-generation IoT networks that
harness the combined strengths of blockchain and artificial intelligence.

CONCLUSION

The study has examined how blockchain-enabled security protocols and Al-based threat analytics have
contributed to the perceived security performance of next-generation IoT networks, and the evidence
has consistently shown that these technologies, when embedded within a mature risk-management
environment, have formed a powerful and complementary security foundation. By adopting a
quantitative, cross-sectional, case-study-based design and gathering Likert-scale perceptions from
professionals directly involved in IoT architecture and security operations, the research has been able
to translate broad conceptual claims about blockchain, Al and IoT security into empirically testable
constructs. The descriptive statistics have indicated that respondents have generally agreed that
blockchain controls, Al analytics and formal IoT risk-management practices have been present to a
meaningful degree in their organizations, and that overall IoT security performance has been rated
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positively. Reliability and validity analyses have confirmed that the measurement scales have been
internally consistent and conceptually coherent, providing confidence that the latent constructs have
faithfully captured perceptions of capability and performance. Correlation analysis has revealed
strong, positive associations among blockchain capability, Al capability, risk-management maturity
and security performance, while multiple regression modeling has demonstrated that both blockchain-
enabled security and Al-based analytics have had significant, independent effects on perceived IoT
security performance, with Al often exerting the stronger influence. Importantly, the inclusion of an
interaction term has shown that organizations reporting high blockchain capability and high Al
capability simultaneously have achieved the highest levels of perceived security performance,
supporting the conclusion that these technologies have operated synergistically rather than merely
additively. In other words, blockchain has appeared most valuable when its tamper-evident logs,
decentralized identity and smart-contract policies have been coupled with Al-driven anomaly
detection and adaptive response that can intelligently interpret and act upon those trusted data, while
Al has appeared more effective when the data and events it consumes have been anchored to a
verifiable, immutable ledger. At the same time, the significant contribution of IoT risk-management
maturity has underscored that technology alone has not been sufficient; organizations have achieved
the strongest security outcomes where advanced tools have been integrated into structured processes
for risk assessment, monitoring and incident response. Collectively, these findings have confirmed all
three core hypotheses, fulfilled the stated research objectives and contributed to both theory and
practice by offering a tested conceptual model that links blockchain capability, Al analytics, risk-
management maturity and IoT security performance in an integrated framework. Although the cross-
sectional design, perceptual measures and case-based sampling have imposed limits on causal
inference and generalizability, the results have provided a robust starting point for more fine-grained,
longitudinal and multi-method investigations. Overall, the study has shown that securing next-
generation IoT networks has been most effective when blockchain-enabled protocols and Al-based
security analytics have been designed, deployed and governed together, within a coherent risk-
management strategy, to create IoT environments that are not only connected and intelligent but also
demonstrably more secure, resilient and trustworthy.

RECOMMENDATION

On the basis of these findings, the study has put forward several integrated recommendations for
organizations seeking to secure next-generation IoT networks through blockchain-enabled protocols
and Al-based threat analytics. First, security leaders and IoT architects should treat blockchain and Al
as complementary pillars of a unified security architecture rather than as isolated pilots; practical
roadmaps should explicitly map blockchain to functions such as decentralized device identity,
configuration and access-control logging, and smart contract-based policy enforcement, while Al
models should be positioned to analyze both on-chain events and off-chain telemetry for anomaly
detection, intrusion detection and adaptive response. Second, before large-scale rollout, organizations
should have conducted structured readiness assessments to evaluate existing infrastructure, data
quality, skills and governance, and should have used these assessments to prioritize a small number of
high-value use cases such as secure firmware updates, zero-trust access to critical IoT assets or cross-
organizational data sharing in supply chains where blockchain and Al together can deliver clear,
measurable improvements. Third, implementation should have followed a phased approach,
beginning with controlled pilots in limited IoT domains, accompanied by clear success criteria (for
example, reduction in incident rates, mean time to detect and mean time to respond), and only then
scaling to broader deployments once both technical performance and operational fit have been
validated. Fourth, because risk-management maturity has significantly influenced outcomes,
organizations should have embedded blockchain and Al into existing risk and compliance processes
rather than treating them as separate technologies; this has involved updating risk registers to include
specific IoT and algorithmic risks, aligning smart-contract policies with formal security policies and
regulatory obligations, and integrating Al-generated alerts into established incident-response
playbooks and security operations center workflows. Fifth, investment in human capabilities should
have been prioritized alongside technology: security and operations staff should have received targeted
training on blockchain concepts, key-management practices, smart-contract design, model tuning and
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interpretation of Al outputs, and cross-functional teams of security, data science and operations
personnel should have been formed to jointly own IoT security outcomes. Sixth, organizations should
have established ongoing monitoring and evaluation mechanisms, including periodic model
retraining, review of smart contracts, audits of on-chain logs and post-incident reviews that explicitly
assess the performance of blockchain and AI components; metrics from these activities should have
been fed back into continuous improvement cycles. Finally, at a strategic level, senior management and
CISOs should have ensured that procurement, vendor management and architectural decisions
explicitly favored interoperable, standards-aligned solutions, so that blockchain platforms, Al engines
and IoT devices can be integrated without excessive customization, and so that future enhancements
such as federated learning, privacy-preserving analytics or more scalable consensus mechanisms can
be adopted without major redesign. By following these recommendations, organizations have been
better positioned to translate the theoretical advantages of blockchain and Al into sustainable,
demonstrable improvements in the security performance of their next-generation IoT networks.
LIMITATIONS

The study has had several limitations that must be acknowledged when interpreting its findings and
considering their applicability beyond the specific context examined. First, the research has relied on a
cross-sectional design, which has captured perceptions at a single point in time and has therefore not
been able to establish causal relationships or track how blockchain-enabled security and Al-based
analytics capabilities, as well as IoT security performance, have evolved in response to new
deployments, incidents or organizational changes. Second, the data source has been a single case-study
setting (or a small number of closely related organizations), which has meant that the sample has
reflected particular sectoral, technological and regulatory conditions; consequently, the results have
not necessarily been generalizable to all industries, regions or types of IoT deployments, especially
those operating at substantially different scales or under different compliance obligations. Third, the
constructs have been measured using self-reported Likert-scale responses from professionals involved
in IoT and security, so the study has been vulnerable to perception biases, social desirability bias and
possible gaps between perceived and actual technical maturity or performance. For example,
respondents may have overestimated the effectiveness of their blockchain implementations or Al
models, or they may not have had complete visibility into all security controls across large, distributed
IoT environments. Fourth, the quantitative measures have been relatively high-level and have not
differentiated among specific design choices, such as the type of blockchain platform or consensus
mechanism used, the precise architectures of Al models, or the details of data pipelines and integration
patterns; as a result, the study has not been able to identify which concrete configurations or
implementation strategies have been more or less effective within the broader categories of “blockchain
capability” and “Al analytics capability.” Fifth, the study has not incorporated objective technical
metrics such as observed attack detection rates, false positives, incident counts, downtime or
transaction latencies alongside subjective perceptions, which has limited the ability to cross-validate
the survey-based indicators of IoT security performance. Sixth, although reliability and validity checks
have been conducted, the use of a single survey instrument administered in one context has meant that
further validation in other settings would have been necessary to confirm the stability and
transferability of the measurement model. Finally, potential omitted variables have remained a
concern: factors such as organizational culture, budget constraints, vendor dependence, legacy system
complexity or prior breach history may also have influenced both the adoption of blockchain and Al
and the perception of security performance, but they have not been explicitly modeled in this study.
Together, these limitations have suggested that the findings should be viewed as an initial, context-
specific contribution that has highlighted important relationships between blockchain capability, Al
analytics and IoT security performance, rather than as definitive, universally generalizable conclusions.
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